Импульсные блоки питания: ремонт своими руками за 7 шагов

PhiX › Блог › РЕМОНТ КОМПЬЮТЕРНЫХ БЛОКОВ ПИТАНИЯ

В этой статье, я немного расскажу об основах ремонта компьютерных, импульсных блоков питания стандарта ATX. Это одна из первых моих статей, я написал её примерно 5 лет назад, по этому прошу строго не судить.

Меры предосторожности.
Ремонт импульсных БП, довольно опасное занятие, особенно если неисправность касается горячей части БП. Поэтому делаем всё вдумчиво и аккуратно, без спешки, с соблюдением техники безопасности.

Силовые конденсаторы могут длительное время держать заряд, поэтому не стоит прикасаться к ним голыми руками сразу после отключения питания. Ни в коем случае не стоит прикасаться к плате или радиаторам при подключенном к сети блоке питания.

Для того чтобы избежать фейерверка и сохранить ещё живые элементы следует впаять 100 ватную лампочку вместо предохранителя. Если при включении БП в сеть лампа вспыхивает и гаснет – все нормально, а если при включении лампа зажигается и не гаснет – где-то короткое замыкание.

Проверять блок питания после выполненного ремонта следует вдали от легко воспламеняющихся материалов.

Инструментарий.

Паяльник, припой, флюс. Рекомендуется паяльная станция с регулировкой мощности или пара паяльников разной мощности. Мощный паяльник понадобиться для выпаивания транзисторов и диодных сборок, которые находятся на радиаторах, а так же трансформаторов и дросселей. Паяльником меньшей мощности паяется разная мелочевка.
Отсос для припоя и (или) оплетка. Служат для удаления припоя.
Отвертка
Бокорезы. Используются для удаления пластиковых хомутов, которыми стянуты провода.
Мультиметр
Пинцет
Лампочка на 100Вт
Очищенный бензин или спирт. Используется для очистки платы от следов пайки.
Устройство БП.

Немного о том, что мы увидим, вскрыв блок питания.

Внутреннее изображение блока питания системы ATX

A – диодный мост, служит для преобразования переменного тока в постоянный

B – силовые конденсаторы, служат для сглаживания входного напряжения

Между B и C – радиатор, на котором расположены силовые ключи

C – импульсный трансформатор, служит для формирования необходимых номиналов напряжения, а также для гальванической развязки

между C и D – радиатор, на котором размещены выпрямительные диоды выходных напряжений

D – дроссель групповой стабилизации (ДГС), служит для сглаживания помех на выходе

E – выходные, фильтрующие, конденсаторы, служат для сглаживания помех на выходе

Распиновка разъема 24 pin и измерение напряжений.

Знание контактов на разъеме ATX нам понадобится для диагностики БП. Прежде чем приступать к ремонту следует проверить напряжение дежурного питания, на рисунке этот контакт отмечен синим цветом +5V SB, обычно это фиолетовый провод. Если дежурка в порядке, то следует проверить наличие сигнала POWER GOOD (+5V), на рисунке этот контакт помечен серым цветом, PW-OK. Power good появляется только после включения БП. Для запуска БП замыкаем зеленый и черный провод, как на картинке. Если PG присутствует, то, скорее всего блок питания уже запустился и следует проверить остальные напряжения. Обратите внимание, что выходные напряжения будут отличаться в зависимости от нагрузки. Так, что если увидите на желтом проводе 13 вольт, не стоит беспокоиться, вполне вероятно, что под нагрузкой они стабилизируются до штатных 12 вольт.

Если у вас проблема в горячей части и требуется измерить там напряжения, то все измерения надо проводить от общей земли, это минус диодного моста или силовых конденсаторов.

Визуальный осмотр.

Первое, что следует сделать, вскрыть блок питания и произвести визуальный осмотр.

Если БП пыльный вычищаем его. Проверяем, крутится ли вентилятор, если он стоит, то это, скорее всего и является причиной выхода из строя БП. В таком случае следует смотреть на диодные сборки и ДГС. Они наиболее склонны к выходу из строя из- за перегрева.

Далее осматриваем БП на предмет сгоревших элементов, потемневшего от температуры текстолита, вспученных конденсаторов, обугленной изоляции ДГС, оборванных дорожек и проводов.

Первичная диагностика.

Перед вскрытием блока питания можно попробовать включить БП, чтобы наверняка определиться с диагнозом. Правильно поставленный диагноз – половина лечения.

Неисправности:

БП не запускается, отсутствует напряжение дежурного питания
БП не запускается, но дежурное напряжение присутствует. Нет сигнала PG.
БП уходит в защиту,
БП работает, но воняет.
Завышены или занижены выходные напряжения
Предохранитель.

Если вы обнаружили, что сгорел плавкий предохранитель, не спешите его менять и включать БП. В 90% случаев вылетевший предохранитель это не причина неисправности, а её следствие. В таком случае в первую очередь надо проверять высоковольтную часть БП, а именно диодный мост, силовые транзисторы и их обвязку.

Варистор

Задачей варистора является защита блока питания от импульсных помех. При возникновении высоковольтного импульса сопротивление варистора резко уменьшается до долей Ома и шунтирует нагрузку, защищая ее и рассеивая поглощенную энергию в виде тепла. При перенапряжении в сети варистор резко уменьшает свое сопротивление, и возросшим током через него выжигается плавкий предохранитель. Остальные элементы блока питания при этом остаются целыми.

Варистор выходит из строя из-за скачков напряжения, вызванными например грозой. Так же варисторы выходят из строя, если по ошибке вы переключили БП в режим работы от 110в. Вышедший из строя варистор обычно определить не сложно. Обычно он чернеет и раскалывается, а на окружающих его элементах появляется копоть. Вместе с варистором обычно перегорает предохранитель. Замену предохранителя можно производить только после замены варистора и проверки остальных элементов первичной цепи.

Диодный мост
Диодный мост представляет собой диодную сборку или 4 диода стоящие рядом друг с другом. Проверить диодный мост можно без выпаивания, прозвонив каждый диод в прямом и обратном направлениях. В прямом направлении падение тока должно быть около 500мА, а в обратном звониться как разрыв.

Диодные сборки измеряются следующим образом. Ставим минусовой щуп мультиметра на ножку сборки с отметкой «+», а плюсовым щупом прозваниваем в направления указанных на картинке.

Конденсаторы
Вышедшие из строя конденсаторы легко определить по выпуклым крышкам или по вытекшему электролиту. Конденсаторы заменяются на аналогичные. Допускается замена на конденсаторы немногим большие по ёмкости и напряжению. Если из строя вышли конденсаторы в цепи дежурного питания, то блок питания будет включаться с n-ого раза, либо откажется включаться совсем. Блок питания с вышедшими из строя конденсаторами выходного фильтра будет выключаться под нагрузкой либо так же полностью откажется включаться, будет уходить в защиту.

Иногда, высохшие, деградировавшие, конденсаторы выходят из строя, без каких либо видимых повреждений. В таком случае следует, предварительно выпаяв конденсаторы проверить их емкость и внутренние сопротивление. Если емкость проверить нечем, меняем все конденсаторы на заведомо рабочие.

Резисторы

Номинал резистора определятся по цветовой маркировке. Резисторы следует менять только на аналогичные, т.к. небольшое отличие в номиналах сопротивления может привести к тому, что резистор будет перегреваться. А если это подтягивающий резистор, то напряжение в цепи может выйти за пределы логического входа, и ШИМ не будет генерировать сигнал Power Good. Если резистор сгорел в уголь, и у вас нет второго такого же БП, чтобы посмотреть его номинал, то считайте, что вам не повезло. Особенно, это касается дешевых БП, на которые, практически не возможно достать принципиальных схем.

Диоды и стабилитроны

Проверяются прозвонкой в обе стороны. Если звонятся в обе стороны как К.З. или разрыв, то не исправны. Сгоревшие диоды следует менять на аналогичные или сходные по характеристикам, внимание обращаем на напряжение, силу тока и частоту работы.

Транзисторы, диодные сборки.

Транзисторы и диодный сборки, которые установлены на радиатор, удобнее всего выпаивать вместе с радиатором. В «первичке» находятся силовые транзисторы, один отвечает за дежурное напряжение, а другие формируют рабочие напряжения 12в и 3,3в. Во вторичке на радиаторе находятся выпрямительные диоды выходных напряжений (диоды Шоттки).

Проверка транзисторов заключается в “позвонке” р-п-переходов, также следует проверить сопротивление между корпусом и радиатором. Транзисторы не должны замыкать на радиатор. Для проверки диодов ставим минусовой щуп мультиметра на центральную ногу, а плюсовым щупом тыкаем в боковые. Падение тока должно быть около 500мА, а в обратном направление должен быть разрыв.

Если все транзисторы и диодные сборки оказались исправные, то не спешите запаивать радиаторы обратно, т.к. они затрудняют доступ к другим элементам.

Если ШИМ визуально не поврежден и не греется, то без осциллографа его проверить довольно сложно.

Простым способом проверки ШИМ, является проверка контрольных контактов и контактов питания на пробой.

Для этого нам понадобиться мультиметр и дата шит на микросхему ШИМ. Диагностику ШИМ следует проводить, предварительно выпаяв её. Проверка производится прозвоном следующих контактов относительно земли (GND): V3.3, V5, V12, VCC, OPP. Если между одним из этих контактов и землей сопротивление крайне мало, до десятков Ом, то ШИМ под замену.

Дроссель групповой стабилизации (ДГС).

Выходит из строя из-за перегрева (при остановке вентилятора) или из-за просчетов в конструкции самого БП (пример Microlab 420W). Сгоревший ДГС легко определить по потемневшему, шелушащемуся, обугленному изоляционному лаку. Сгоревший ДГС можно заменить на аналогичный или смотать новый. Если вы решите смотать новый ДГС, то следует использовать новое ферритовое кольцо, т.к. из за перегрева старое кольцо могло уйти по параметрам.

Трансформаторы.

Для проверки трансформаторов их следует предварительно выпаять. Их проверяют на короткозамкнутые витки, обрыв обмоток, потерю или изменение магнитных свойств сердечника.

Чтобы проверить трансформатор на предмет обрыва обмоток достаточно простого мультиметра, остальные неисправности трансформаторов определить гораздо сложнее и рассматривать их мы не будем. Иногда пробитый трансформатор можно определить визуально.

Опыт показывает, что трансформаторы выходят из строя крайне редко, поэтому их нужно проверять в последнюю очередь.

Профилактика вентилятора.

После удачного ремонта следует произвести профилактику вентилятора. Для этого вентилятор надо снять, разобрать, почистить и смазать.

Отремонтированный блок питания следует длительное время проверить под нагрузкой.
Прочитав эту статью, вы самостоятельно сможете произвести легкий ремонт блока питания, тем самым сэкономив пару монет и избавить себя от похода в сервис или магазин.

Быстрый ремонт импульсного источника питания своими руками

Чтобы, отремонтировать импульсный источник питания, вначале выявляется неисправность, приведшая к поломке БП. В статье представлены практические советы как быстро восстановить работоспособность источника напряжения собственными руками.

Когда часть оборудования оказывается полностью мертвой, первое, на что следует обратить внимание, — это источник напряжения. Если для поиска неисправностей используется осциллограф, это должен быть портативный прибор с батарейным питанием, изолированный от земли. Причина в том, что велика вероятность существования внутреннего напряжения, которое может создавать опасные токи короткого замыкания при подключении к настольному осциллографу.

Как быстро и правильно отремонтировать импульсный источник питания

Всем радиолюбителям хорошо известно, что импульсные источники питания созданы, как правило, для выпрямления переменное напряжение электросети в постоянное с последующим понижением его номинального значения. Поэтому, во включенном состоянии такое устройство всегда находится под высоким напряжением. Следовательно, установленные в блоке питания компоненты часто подвержены выходу из строя в силу разных причин.

В связи с этим, мы здесь подготовили для вас практические советы как грамотно и не затратно восстановить работоспособность сгоревшего импульсного источника питания в домашних условиях. Поделимся методом как быстро находить в устройстве неисправный компонент ставший причиной поломки оборудования.

Основы поиска и устранения неисправностей блоков питания

Импульсный источник питания может быть выполнен в различных конфигурациях, например: в виде печатной платы в составе устройства или отдельного модульного прибора. Тем не менее, его основная задача, как писалось выше, — выпрямление с одновременным уменьшением напряжения сети до необходимого значения. Такая потребность в использовании этого электрооборудования вызвана тем, что домашние электрические сети имеют стандартизированное напряжение 220 вольт.

Однако, не все устройства и инструменты используемые нами в быту могут работать на напряжении 220 вольт, то-есть для некоторых из них требуется значительно меньшее напряжение. Сейчас современная аппаратура использует импульсные источники напряжения, которые постепенно приходят на смену блокам изготовленным по схеме мостового выпрямителя с фильтром и мощного силового трансформатора.

Примечание! Вопреки бытующему мнению о высокой надежности ИИП, компоненты, установленные в импульсных блоках напряжения, частенько выходят из строя. Как говорят: «ничто не вечно…». Вот почему, пока будет существовать такое оборудование, всегда будет востребована необходимость в их ремонте.


Импульсный источник питания на печатной плате

В общем пойдем дальше. Для общего понятия разделим устройство на ключевые модули, которые имеются практически в любом импульсном источнике электропитания. Стандартный вариант импульсного блока питания относительно можно разграничить на три составные части по функциям.

  1. Узел широтно-импульсной модуляции (ШИМ-контроллер), на основе которого выполняется построение задающего генератора электрических колебаний, как правило с частотой примерно 35…65 кГц;
  2. Линейка мощных силовых ключей, функции которых могут осуществлять как биполярные так и полевые либо трехэлектродные IGBT транзисторы имеющие изолированный затвор; кроме того, эта часть схемы может состоять из дополнительных управляющих ключами элементов, собранных на транзисторах малой мощности;
  3. Импульсный трансформатор с одной или несколькими первичными и вторичными обмотками, а также выпрямительными диодами, конденсаторами для фильтрации выпрямленного напряжения, стабилизаторами в выходной цепи; в качестве магнитопровода как правило, применяется сердечник на основе феррита или альсифера;

Вот, в общем это и есть основные понятия, которые требуется для изготовления или ремонта импульсного источника питания. На представленном выше снимке основные узлы ИИП выделены цветом. Для лучшего наглядного восприятия, также эти узлы отмечены цветом и на принципиальной схеме. Ниже в качестве примера:


Принципиальная схема ИИП. Кстати, на этой схеме силовой узел выполнен со средней точкой.

Внимание! Начиная выполнять поиск неисправности в устройствах такого типа, не забывайте, что на электронных компонентах может сохранятся напряжение, поэтому, перед началом работы, обязательно разряжайте цепь высокого напряжения.

Неисправности современных импульсных блоков питания — возможные причины поломки

Проблемы, возникающие с блоками напряжения, когда они отказываются работать, в основном могут образоваться по следующим причинам:

  • броски напряжения в электрической сети. Именно такие броски напряжения с высокой амплитудой во многих случаях приводят к поломке устройства, которое не рассчитано на такие всплески;
  • работа источника питания с максимальной нагрузкой длительное время;
  • в схеме не предусмотрена защита. Некоторые изготовители такого типа оборудования, просто-напросто экономят на дополнительных компонентах, поэтому пренебрегают установкой защиты в приборе. Если в ремонтируемом вами блоке отсутствует защита, то лучшим вариантом будет добавить ее в схему;
  • невыполнение инструкции по эксплуатации изделия, приложенной изготовителем для определенной модели.

Кроме этого, частые поломки у преобразователей напряжения возникают из-за некачественных деталей устанавливаемых производителем. Так например сейчас, все российские рынки и не только российские, заполонили изделия сомнительного качества от китайских «товарищей». Поэтому, в такой ситуации, когда больше не из чего выбирать, остается надеяться на удачу, что попадется качественный прибор.

Во время проверки импульсного блока часто обнаруживаются следующие проблемы:

  • 40 процентов поломок происходят в цепи высокого напряжения. Так например: часто выходят из строя диодный мост или электролитический фильтрующий конденсатор в силовом тракте выпрямителя;
  • 30 процентов неисправностей образуются также в силовой части устройства из-за пробоя мощных ключей переключения MOSFET;
  • 15 процентов составляет токовый пробой переходов диодного моста в цепи вторичной обмотки выпрямителя;
Читайте также:  Всё о вентиляции из оцинкованной стали: трубы, воздуховоды, короба и их цены


Диодная мостовая сборка

Выше мы обозначили основные неисправности, которые могут возникнуть в процессе эксплуатации прибора, а вот другие поломки выявляются только с использованием более точных устройств диагностики и измерений. Чтобы выполнить корректный поиск причины, приведшей к неработоспособности оборудования, для этого используют осциллограф и как минимум — мультиметр. В следствие этого, если возникшая проблема не соответствует трем, обозначенным выше параграфам, то собственноручно отремонтировать импульсный источник питания будет несколько проблематично, не имея специальных приборов и опыта в электронике.

Исходя из этого, можно сделать определенный вывод: если ваш персональный компьютер или телевизор перестал подавать признаки жизни, сразу же начинайте искать причину начиная с БП. Другой вопрос в этой ситуации: если, все-же у вас не хватает знаний в ремонте такой сложном оборудовании как ИИП, тогда все-таки лучшим вариантом будет обратится к специалистам.

Метод выявления неисправного компонента

Примечание! Чтобы быстро отыскать неисправность, приведшей импульсный источник питания в нерабочее состояние, вам, как минимум, потребуется цифровой мультиметр.


Мультиметр

Для выявления проблемы, возникшей в устройстве, нужно выполнить последовательные шаги:

  • вскрываем источник питания;
  • вольтметром замеряем напряжение на электролитическом конденсаторе установленном в цепи выпрямителя;


Замер напряжение на электролите

Проверка конденсатора

  • в случае определения прибором напряжения 300v на конденсаторе, то это будет означать, что этот участок силовой цепи находится в полном порядке;
  • в схемах, использующих два малогабаритных конденсатора, напряжение определенное вольтметром в 150 вольт на каждом из них, соответствует исправности силового тракта;
  • если в этой точке нет напряжения, то в первую очередь необходимо проверить состояние выпрямительных диодов, цепь фильтрующего конденсатора и предохранитель;


Плавкий предохранитель в схеме импульсного блока напряжения

  • при обнаружении сгоревшего предохранителя, кроме его замены, также нужно прозвонить и другие компоненты схемы. Чтобы обнаружить причину, которая привела к выходу из строя предохранителя;
  • проблемные электролитические конденсаторы обнаружить довольно просто. Из них либо вытекает электролит, либо они становятся «беременными», поэтому они не подлежат ремонту — только замена;
  • в обязательном порядке проверяется вся цепь выпрямителя, включая диодный мост;


Диодный мост импульсного источника питания

  • сглаживающий конденсатор в цепи фильтра, может быть установлен в виде одиночной емкости или набора линейки, составленной из нескольких емкостей, включенных по схеме последовательного или параллельного соединения;
  • силовые транзисторные ключи, как правило, устанавливаются на теплоотводах.

Примечание! Приступая к ремонту, старайтесь сразу выявить все неисправные элементы устройства, и в последовательном порядке заменить их. Нельзя, заменяя одну деталь, оставлять в схеме сгоревшую деталь, а затем включать прибор для проверки. Такие действия могут привести к более тяжелым последствиям!

Специфика самостоятельного ремонта ИИП

Для выполнения диагностики и ремонта стандартных блоков питания импульсного типа, просто нужно придерживаться советов, которые мы предложили выше. А конструктивное исполнения такого оборудования, мало чем отличается друг от друга, хотя они могут быть от разных производителей.


Проверка электронных элементов печатной плате

Для качественного ремонта импульсного источника напряжения своими руками, нужно иметь в своем распоряжении соответствующие приборы и инструменты, а именно: хороший паяльник, припой, растворитель для смывки излишков флюса на плате и основные инструменты:

  • комплект разных отверток;
  • пинцет;
  • цифровой мультиметр;
  • обычная лампочка на 150 Вт /220 вольт. Хороший вариант для подключения ее как нагрузки.


Общий вид платы блока питания

Грамотно выполненная диагностика устройства, является гарантией успешного ремонта. Проблемы, связанные с выходом из строя какого либо элемента в высоковольтном тракте, найти не составит никакого труда. Их легко выявить, как при визуальном осмотре, так и с использованием мультиметра.


Процесс работы

После устранения выявленных неисправностей и замене всех сгоревших при этом деталей, импульсный источник питания, при включении начинает сразу работать без всякой предварительной настройки. Так, что если вы обладаете хотя бы первоначальными знаниями в электронике и имея хоть какой-то опыт в ремонте подобных устройств, то вы наверняка справитесь самостоятельно с восстановлением ИБП.

Как отремонтировать импульсный блок питания

Быстрый ремонт импульсных блоков питания своими руками

  1. Диагностика
  2. Ремонт пошагово с фото
  3. Видео
  4. Общие рекомендации по ремонту блока питания телевизора

Промышленные блоки питания нередко выходят из строя, иногда даже и высококачественные и дорогостоящие образцы. В таком случае обычный человек чаще всего выбрасывает и приобретает новое, но причина поломки может быть незначительной, а для радиолюбителя такие устройства представляют немалый интерес в плане изучения и возможности возвращения работоспособности. При том, что зачастую выбрасываются устройства, стоящие немало денег.

Предлагаем пользователям рассмотреть простой ремонт стабилизированного блока питания импульсного типа, основанного на обратноходовом генераторе с обратной связью по току и напряжению, что кроме стабилизации позволяет осуществить и защиту от перегрузки. Блок питается от сети переменного тока с напряжением от 100 до 240 Вольт частоты 50/60 Герц и выдаёт постоянное напряжение 12 Вольт 2 Ампер.

Описываемая здесь неисправность довольно часто встречается в блоках питания указанного типа и имеет следующие симптомы: напряжение на выходе периодически появляется и пропадает с определённой частотой, что визуально наблюдается как вспышки и погасания светодиода индикатора выходного питания:

Если же индикаторный светодиод не установлен, то подобный симптом можно обнаружить стрелочным вольтметром, подключив его к выходу блока питания. При этом стрелка вольтметра периодически будет отклоняться до некоторого значения и возвращаться обратно (может не до конца). Такое явление наблюдается вследствие срабатывания защиты устройства, при превышении напряжения или тока в определённых точках выше допустимого.

Это может произойти как и при коротком замыкании, так и при разрыве цепи. Короткое замыкание чаще всего бывает во время пробоя конденсаторов или полупроводниковых радиоэлементов, таких как диоды или транзисторы. Обрыв же может наблюдаться как у полупроводников, так и резисторов. В любом случае в первую очередь следует визуально осмотреть печатную плату и установленные на ней радиоэлементы.

Диагностика блока питания перед ремонтом

Лучше всего проводить визуальную диагностику с помощью увеличительной лупы:

На плате был обнаружен подгоревший резистор с позиционным номером R18, при прозвонке которого выявился его обрыв и нарушение контакта:

Ремонт блока питания пошагово с фото

Сгорание резистора могло произойти при долговременном превышении на нём номинальной мощность рассеивания. Сгоревший резистор был выпаян, а его посадочное место было зачищено:

Для замены резистора нужно узнать его номинал. Для этого был разобран заведомо исправный блок питания. Указанный резистор оказался с сопротивлением 1 Ом:

Далее по цепи этого резистора был обнаружен пробитый конденсатор с позиционным номером C6, прозвонка которого показала его низкое сопротивление, а следовательно и непригодность для дальнейшего использования:

Как раз пробой этого конденсатора и мог стать причиной сгорания резистора и дальнейшей неработоспособности всего устройства в целом. Этот конденсатор также был удалён со своего места, вы можете сравнить, насколько он мал:

Пробитый конденсатор соизмерим со спичечной головкой, вот такая маленькая деталь стала причиной поломки блока питания. Рядом с ним на плате, параллельно ему, установлен второй такой же конденсатор, который уцелел. К сожалению, конденсатора для замены не оказалось и все надежды легли на оставшийся второй конденсатор. А вот на место сгоревшего резистора был подобран резистор с нужным сопротивлением в 1 Ом, но не поверхностного монтажа:

Этот резистор был установлен на посадочное место сгоревшего, места пайки были зачищены от остатков флюса, а посадочное место пробитого конденсатора было покрыто лаком для лучшей изоляции и устранения возможности воздушного пробоя этого места:

После пробного включения блок питания заработал в нормальном режиме и индикаторный светодиод перестал мигать:

Впоследствии установленный резистор всё же был заменён на резистор поверхностного монтажа и на месте удалённого конденсатора был нанесён второй слой лака:

Конечно идеальным было бы установить и второй конденсатор, но даже и без него блок питания работает нормально, без постороннего шума и мерцания светодиода:

После включения адаптера в сеть был произведён замер выходного напряжения, оно оказалось в пределах нормы, а именно 11,9 Вольт:

На этом ремонт устройства можно считать завершённым, так как ему была возвращена работоспособность и его и дальше можно применять по назначению. Стоит отметить, что блок выполнен по весьма хорошей схеме, которую, к сожалению, не представилось возможным зарисовать.

На данный момент по быстрому внешнему осмотру можно выделить хороший сетевой и выходной фильтр, продуманную схемотехнику управления силовым транзистором и хорошую стабилизацию выходного напряжения. Физическое исполнение устройства тоже на высоком уровне, монтаж жёсткий и ровный, пайка чистая, использованы прецизионные радиоэлементы. Всё это позволяет получить устройство высокого качества с точно заданными параметрами и характеристиками.

  • Читайте больше о ремонте компьютерного блока питания

Из общих рекомендаций по поиску неисправностей, в первую очередь следует осуществить визуальный осмотр, обращая внимание на потемневшие участки платы или повреждённые радиоэлементы. При обнаружении сгоревшего резистора или предохранителя обязательно нужно прозвонить ближайшие детали, непосредственно соединённые с визуально повреждённой.

Особенно опасны полупроводники и конденсаторы в высоковольтных цепях, которые в случае пробоя могут повлечь за собой необратимые последствия для всего устройства при многократном его включении без выявления полного списка повреждённых компонентов. При правильной и внимательной диагностике в большинстве случаев всё заканчивается хорошо и поломку удаётся устранить заменой повреждённых деталей на такие же исправные или близкие по номиналу и параметрам.

Видеоинструкция по ремонту импульсного блока питания:

Общие рекомендации по ремонту блока питания телевизора

Импульсные блоки питания — самый ненадежный узел в современных радиоустройствах. Оно и понятно — огромные токи, большие напряжения. Через ИБП проходит вся мощность, потребляемая устройством. При этом не будем забывать, что величина мощности, отдаваемая ИБП в нагрузку, может изменяться в десятки раз, что не может благотворно влиять на его работу.

Большинство производителей применяют простые схемы импульсного блока питания, оно и понятно. Наличие нескольких уровней защиты часто лишь усложняет ремонт и практически не влияет на надежность, так как повышение надежности за счет дополнительной петли защиты компенсируется ненадежностью дополнительных элементов, а при ремонте приходится долго разбираться, что это за детали и зачем они нужны.

Конечно, каждый импульсный блок питания имеет свои характеристики, отличающиеся мощностью, отдаваемой в нагрузку, стабильностью выходных напряжений, диапазоном рабочих сетевых напряжений и другими параметрами, которые при ремонте играют роль, только когда нужно выбрать замену отсутствующей детали.

Понятно, что при ремонте желательно иметь схему. Ну, а если ее нет, простые телевизоры можно ремонтировать и без нее. Принцип работы всех импульсных блоков питания практически одинаков, отличие только в схемных решениях и типах применяемых деталей.

  • Как исправить выгорание экрана смартфона?

Мы рассмотрим методику, выработанную многолетним опытом ремонта. Вернее, это не методика, а набор обязательных действий при ремонте, проверенных практикой. Для ремонта необходим тестер (авометр) и, желательно, но необязательно, осциллограф.

Итак, пошаговая инструкция ремонт импульсного блока питания:

    Включаем телевизор, убеждаемся, что он не работает, что индикатор дежурного режима не горит. Если он горит, значит дело, скорее всего, не в блоке питания. На всякий случай надо будет проверить напряжение питания строчной развертки.

Выключаем телевизор, разбираем его.

Проводим внешний осмотр платы телевизора, особенно участка, где размещен блок питания. Иногда могут быть обнаружены вспучившиеся конденсаторы, обгоревшие резисторы и другое. Надо будет в дальнейшем проверить их.

Внимательно смотрим пайки, особенно трансформатора, ключевого транзистора/микросхемы, дросселей.

Проверяем цепь питания: прозваниваем шнур питания, предохранитель, выключатель питания (если он есть), дроссели в цепи питания, выпрямительный мост. Часто при неисправном ИБП предохранитель не сгорает — просто не успевает. Если пробивается ключевой транзистор, скорее сгорит балластное сопротивление, чем предохранитель. Бывает, что горит предохранитель из-за неисправности позистора, который управляет размагничивающим устройством (петлей размагничивания). Обязательно проверьте на короткое замыкание выводы конденсатора фильтра сетевого питания, не выпаивая его, так как таким образом часто можно проверить на пробой выводы коллектор – эмиттер ключевого транзистора или микросхемы, если в нее встроен силовой ключ. Иногда питание на схему подается с конденсатора фильтра через балластные сопротивления и в случае их обрыва надо проверять на пробой непосредственно на электродах ключа.

Проверяем остальные детали блока — диоды, транзисторы, некоторые резисторы. Сначала проверку производим без выпаивания детали, выпаиваем только когда возникло подозрение, что деталь может быть неисправна. В большинстве случаев такой проверки достаточно. Часто обрываются балластные сопротивления. Балластные сопротивления имеют малую величину (десятые Ома, единицы Ом) и предназначены для ограничения импульсных токов, а также для защиты в качестве предохранителей.

  • Смотрим, нет ли замыканий во вторичных цепях питания — для этого проверяем на короткое замыкание выводы конденсаторов соответствующих фильтров на выходах выпрямителей.
  • Выполнив все проверки и заменив неисправные детали, можно заняться проверкой под током. Для этого вместо сетевого предохранителя подключаем лампочку 150–200 Ватт 220 Вольт. Это нужно для того, чтоб лампочка защитила блок питания в случае, если неисправность не устранена. Отключите размагничивающее устройство.

    Включаем. На этом этапе возможны три варианта:

      Лампочка ярко вспыхнула, затем притухла, появился растр. Или загорелась индикация дежурного режима. В обоих случаях надо замерить напряжение, питающее строчную развертку — для разных телевизоров оно различно, но не больше 125 Вольт. Часто его величина написана на печатной плате, иногда возле выпрямителя, иногда возле ТДКС. Если оно завышено до 150–160 Вольт, а телевизор находится в дежурном режиме, то переведите его в рабочий режим. В некоторых телевизорах допускается завышение напряжений на холостом ходу (когда строчная развертка не работает). Если в рабочем режиме напряжение завышено, проверьте электролитические конденсаторы в блоке питания только методом замены на заведомо исправный. Дело в том, что часто электролитические конденсаторы в ИБП теряют частотные свойства и на частоте генерации перестают выполнять свои функции несмотря на то, что при проверке тестером методом заряда-разряда конденсатор вроде бы исправен. Также может быть неисправна оптопара (если она есть) или цепи управления оптопарой. Проверьте, регулируется ли выходное напряжение внутренней регулировкой (если таковая имеется). Если не регулируется, то надо продолжить поиск неисправных деталей.

    Лампочка ярко вспыхнула и погасла. Ни растра, ни индикации дежурного режима не появилось. Это говорит о том, что импульсный блок питания не запускается. Надо измерить напряжение на конденсаторе сетевого фильтра, оно должно быть 280–300 Вольт. Если его нет — иногда ставят балластное сопротивление между мостом сетевого выпрямителя и конденсатором. Еще раз проверить цепи питания и выпрямителя. Если напряжение занижено, может быть оборван один из диодов моста сетевого выпрямителя или, что встречается чаще, потерял емкость конденсатор фильтра сетевого питания. Если напряжение в норме, то нужно еще раз проверить выпрямители вторичных источников питания, а также цепь запуска. Цепь запуска у простых телевизоров состоит из нескольких резисторов, включенных последовательно. Проверяя цепь, надо измерять падение напряжения на каждом из них, измеряя напряжение непосредственно на выводах каждого резистора.

    Читайте также:  Доска ДПК: история появления, достоинства, размеры и комплектация, особенности монтажа
  • Лампочка горит на полную яркость. Немедленно выключите телевизор. Заново проверьте все элементы. И помните — чудес в радиотехнике не бывает, значит вы где-то что-то упустили, не все проверили.
  • На 95 % неисправности укладываются в данную схему, однако встречаются более сложные неисправности, когда приходится поломать голову. Для таких случаев методики не напишешь и инструкцию не создашь.

    • Пошаговый ремонт компьютерных колонок SVEN

    Не выбрасывайте повреждённые устройства, восстанавливайте их. Конечно иногда дешевле и проще купить новое, но ремонт — это полезное и увлекательное занятие, позволяющее развить навыки восстановления и конструирования своих собственных устройств.

    Импульсные блоки питания: ремонт своими руками за 7 шагов

    Все современные электрические приборы, использующие цифровые технологии, питаются от встроенных блоков, работающих в импульсном режиме.

    Они снабжаются защитами, имеют качественный монтаж, но из-за скачков напряжения в сети или ошибок человека все же выходят из строя: тогда дорогой бытовой помощник перестает работать.

    Чтобы вы могли с минимальными потерями выйти из этой ситуации, я подробно объясняю все про импульсные блоки питания, ремонт своими руками их неисправностей.

    • Импульсные блоки питания — как работают: краткий обзор схем
    • Правила безопасности с электрическим током: как исключить риски и защититься от удара током при ремонте ИБП
    • Как отремонтировать импульсный блок питания своими руками: важные советы для начинающих
      • Подготовительные работы: где найти схему импульсного блока питания и какие нужны измерительные приборы
      • Алгоритм ремонта импульсного блока питания: полная инструкция из 7 последовательных шагов

    Вначале предлагаю немного отойти от темы, чтобы вспомнить подсобный справочный материал. Если он вам не нужен, то сразу переходите к вопросам ремонта.

    Импульсные блоки питания — как работают: краткий обзор схем

    Структурная схема импульсного блока питания поясняется мнемоническими символами формы напряжения над каждым его составным блоком, а связи взаимодействия обозначены стрелками.

    Принципиальную схему удобно представлять таким видом.

    Монтажная плата одного из устройств с расположением деталей показана на фотографии ниже с моими комментариями.

    Естественно, что это только частный случай, который, скорее всего не совпадет с вашим ИБП. Здесь я преследую простую цель — напомнить принципы взаимодействия составных частей блока.

    Если вам необходимо более подробно ознакомиться с этими вопросами, то читайте специально написанную статью.

    Правила безопасности с электрическим током: как исключить риски и защититься от удара током при ремонте ИБП

    На всех существующих схемах импульсных блоков питания рядом с первичными цепями 220 вольт расположены вторичные — выходного напряжения. Их все необходимо измерить и оценить.

    Я же заострю ваше внимание только на трех вопросах:

    1. Работайте под напряжением только одной рукой: вторую засуньте в карман и не доставайте — сразу снизите риск попадания под действие электрического тока.
    2. Накопительные конденсаторы длительно хранят запасенную энергию даже при отключенном напряжении, требуют осторожного обращения.
    3. Подключайте импульсный блок питания для проверок только через разделительный трансформатор.

    Электрическое сопротивление человеческого тела очень низкое: наш организм состоит из жидкостей. Если работать под напряжением двумя руками, то существует большая вероятность создать путь для прохождения тока короткого замыкания через свое тело.

    А ведь несколько десятков миллиампер уже могут вызвать фибрилляцию сердца.

    Мгновенный разряд конденсатора тоже способен причинить большой вред организму. Не советую испытывать судьбу: проверять на себе работу электрошокера.

    Накопленный емкостной заряд следует предварительно снимать. Причем делать это не простой закороткой его выводов пинцетом или перемычкой, а резистивным сопротивлением в десятки килоом. Иначе могут возникнуть большие токи, которые элементарно повредят исправный конденсатор.

    Разделительный трансформатор отделяет подключенный к нему потребитель от цепей питающей подстанции. Его применение исключает стекание тока через тело человека по контуру земли.

    Величина тока короткого замыкания во вторичной цепи 220 разделительного трансформатора ограничивается мощностью, которую может передавать его магнитопровод.

    Эта схема подключения допускает касание одной рукой (не двумя) любого места вторичной обмотки трансформатора или подключенного к ней источника бесперебойного питания.

    Подключать ИБП к вторичной цепи разделительного трансформатора рекомендую через лампу накаливания.

    Ее же с мощностью 60-100 ватт допустимо использовать в качестве токоограничивающей нагрузки при ремонте блока без разделительного трансформатора. Она уменьшит аварийный ток, может спасти транзистор от выгорания.

    Как отремонтировать импульсный блок питания своими руками: важные советы для начинающих

    Профессиональный электрик всегда начинает работу с подготовки рабочего места, инструмента и оценки рисков, которые необходимо предотвратить.

    Следует хорошо представлять, что ремонтировать импульсный блок питания своими руками — значит работать под напряжением в действующих цепях.

    Подготовительные работы: где найти схему импульсного блока питания и какие нужны измерительные приборы

    Сейчас производители электротехнического оборудования хранят в тайне свои профессиональные секреты: схемы ИБП в свободном доступе нет. Мы же собрались делать ремонт своими руками, а не в специализированном сервисе.

    Поступаем следующим образом:

    1. Вскрываем корпус и осматриваем электронную плату.
    2. Находим мощный транзистор (выходной ключ) и микросхему (ШИМ-контроллер). Иногда они могут быть объединены общим корпусом.
    3. Записываем маркировку и по ней ищем в справочниках или через интернет полное описание (data sheet).
    4. Изучаем по найденной документации выводы микросхемы, способы ее подключения и сравниваем полученные сведения с реальной конструкцией.

    Технологию поверхностного монтажа печатных плат и способы маркировки деталей хорошо объясняет в своем видеоролике Влад ЩЧ. Рекомендую посмотреть.

    Без измерительного электрического инструмента отремонтировать ИБП вряд ли получится. Можно обойтись старыми стрелочными приборами — тестерами, как мой Ц4324.

    Они позволяют измерять большинство электрических параметров с достаточным для ремонта классом точности, но требуют повышенного внимания и выполнения дополнительных вычислений.

    Сейчас намного удобнее использовать для замеров цифровой мультиметр.

    Все правила обращения с ним для новичков я очень подробно объяснил в специально опубликованной статье. Надеюсь, что она будет вам полезна.

    Большую помощь в поиске неисправностей окажет осциллограф. Он позволяет просмотреть осциллограммы напряжений практически каждого узла ИБП.

    По их виду и величинам довольно просто оценивать работоспособность каждого электронного элемента в составе схемы. Для снятия замеров подойдет любая модель: старая аналоговая или современная цифровая.

    Но, если осциллографа нет, то отчаиваться не стоит. В подавляющем большинстве случаев можно обойтись цифровым мультиметром или стрелочным тестером.

    Алгоритм ремонта импульсного блока питания: полная инструкция из 7 последовательных шагов

    Неисправности внутри ИБП можно разделить на две категории:

    1. Явное выгорание с обугливанием деталей, дорожек, взрывы конденсаторов.
    2. Тихая потеря работоспособности без проявления внешних повреждений.

    Алгоритм ремонта импульсного блока питания состоит из двух последовательных этапов: вначале проводят первичные проверки без подачи напряжения, а затем — замеряют величины электрических характеристик.

    Шаг №1: внешний и внутренний осмотр

    Первоначально вам придется вскрыть корпус и внимательно осмотреть его содержимое. Все, что вызывает сомнения, необходимо тщательно проверить.

    Первый тип повреждения таит в себе ту опасность, что определить маркировку сгоревших деталей бывает сложно, а то и невозможно. На этом этапе ремонт может остановиться.

    Шаг №2: проверка входного напряжения

    Во втором случае поиск места дефекта начинают с проверки наличия цепей питания 220 вольт. Часто возникает повреждение сетевого шнура или перегорание предохранителя.

    Плавкая вставка предохранителя обычно перегорает от пробоя полупроводникового перехода диодов выпрямительного моста, транзисторных ключей или дефектов блока, управляющего дежурным режимом.

    Все это надо проверить мультиметром: его переводят в режим омметра и замеряют состояние электрического сопротивления указанных цепочек, ищут обрыв, который необходимо устранить.

    Сразу скажу, что не стоит успокаиваться, если обнаружили сгоревший предохранитель: он так просто не выходит из строя. Явно в цепи ИБП возникло короткое замыкание или перегруз: придется искать дополнительно поврежденные детали.

    Если повреждений нет, то импульсный блок питания размещают на диэлектрическом основании стола и подают на него 220 вольт.

    Входное напряжение надо проверить мультиметром в режиме вольтметра, провести измерения на входе сетевого фильтра и после плавкой вставки предохранителя.

    Шаг №3: проверка состояния сетевого фильтра и выпрямителя

    Работоспособность этой схемы следует определять вольтметром в режиме измерения переменного напряжения. Обращайте внимание на величину его сигнала на входе и выходе. У исправного прибора амплитуда гармоник практически не должна отличаться.

    Качество фильтрации посторонних помех хорошо показывает осциллограф, но если он отсутствует, то это не так уж и страшно. Его замеры могут понадобиться в исключительных случаях, их допустимо пропустить.

    Также проверяется работа выпрямителя: вольтметр для замера выходного напряжения переключают в режим цепей постоянного тока. Его концы устанавливают на ножки электролитического конденсатора или их дорожки.

    Когда напряжение на выходе из фильтра или выпрямителя не укладывается в норму, то придется проверять исправность всех деталей, которые входят в его схему.

    В первую очередь обращайте внимание на электролитические конденсаторы, которые при излишнем нагреве усыхают, теряя емкость, а то и взрываются. Сразу оцените правильность их геометрической формы.

    Любое малейшее искажение, особенно вздутый конденсатор — признак внутреннего повреждения. Если геометрия не нарушена, то приступают к электрическим замерам.

    Стрелочным тестером это можно сделать двумя способами:

    1. Конденсатор разряжают. Прибор переводят в режим омметра и его внутренним источником заряжают емкость: просто щупы ставят на ножки и выдерживают небольшое время.

    Затем цешку переводят в режим вольтметра и наблюдают за разрядом емкости. Способ приблизительный, оценочный, но довольно быстрый.

    • Более точно, но сложнее оценить конденсатор можно измерением его емкостного сопротивления. Через него пропускают синусоидальный ток, оценивают замерами его величину и падение напряжения. По закону Ома вычисляют емкостное сопротивление Хс. По нему рассчитывают емкость конденсатора C.

    Цифровой мультиметр позволяет просто определить величину емкости обычным замером. Внутри него уже есть встроенный генератор, а процессы измерения тока с напряжением, как и вычисления, автоматизированы.

    Во вторую очередь анализируйте исправность диодов. Все они, включая силовые, должны проводить ток только в одну сторону. Их работоспособность оценивают мультиметром в режиме омметра или прозвонки.

    Шаг №4: проверка работы инвертора

    Учитываем, что схема построения каждого высокочастотного генератора собирается не только из различных деталей, но и с большим разнообразием конструкторских решений.

    Часто генератор объединен в составе электронной платы с высокочастотным трансформатором, а также выходным выпрямителем и фильтром. Мы будем исходить из того, что точной схемы построения ИБП у нас нет: проверяем ее по внешним, косвенным признакам.

    Работаем мультиметром в режиме вольтметра: последовательно оцениваем амплитуды напряжений на разных точках инверторной схемы. Учитываем, что прибор показывает действующие величины, а не максимальные, амплитудные.

    Осциллограф с делителем напряжений здесь более уместен: он покажет еще и форму каждого сигнала, что может значительно облегчить поиск неисправности.

    Шаг №5: проверка выходных напряжений

    Обращаю внимание, что многие ИБП, особенно компьютерные, на выходе имеют несколько цепей, отличающихся по величине напряжения, например, 12, 5 и 3,3 вольта. Причем они могут собираться на разные нагрузки.

    Их все надо проверить электрическими замерами. Чтобы запустить компьютерный блок в работу необходимо закоротить управляющий сигнал запуска БП PS_On на нулевой провод черного цвета.

    Для проверки под напряжением рекомендуется собрать простую схему из обычных резисторов. Желательно их выбирать большой мощности и ставить на радиаторы или делать принудительный обдув на время проверки.

    Если в качестве нагрузки использовать рабочие блоки компьютера, например CD привод, HDD или материнскую плату, как иногда рекомендуют отдельные мастера, то велика вероятность того, что не устраненная еще неисправность блока питания повредит и их.

    Шаг №6: проверка работы защиты от перегрузок

    Операция проводится после проверки качества выходных напряжений на всех участках схемы.

    Импульсные блоки питания для сложных электронных устройств (мониторы, цифровые телевизоры и подобная техника) имеют в своем составе токовую защиту. Она снимает питание с подключенной цепи при возникновении в ней опасных токов, превышающих номинальную величину.

    Эта защита работает от встроенного датчика тока, сигнал с которого о перегрузке подается на управляющую микросхему. Она, в свою очередь, отключает питание выходным силовым контактом с создавшегося аварийного режима.

    Тема эта очень большая, обширная. Принципы построения токовой защиты в импульсных блоках питания доступно объясняет владелец видеоролика Ростислав Михайлов.

    Шаг №7: проверка схемы стабилизации выходных напряжений

    На этом заключительном этапе оценивается работа блока управления инвертором при меняющемся входном напряжении питания по действию схемы обратной связи.

    Алгоритм проверки состоит из следующих этапов:

    1. ИБП отключают от цепей входного напряжения 220 вольт.
    2. К выходу оптопары подключают стрелочный тестер, переключенный в режим омметра, хотя можно использовать и цифровой мультиметр.
    3. На выход блока питания +/-12 V подают постоянное напряжение от регулируемого источника, меняют его величину и контролируют срабатывание оптопары по показаниям омметра.

    При пониженном напряжении оптопара будет иметь высокое электрическое сопротивление, а при достижении на схеме уровня 12 вольт ее выход откроется, и стрелка омметра резко снизит свои показания.

    Такое срабатывание свидетельствует о совместной исправности стабилитрона, оптопары и схемы стабилизации.

    Не помешает также отдельно проверить целостность силового транзистора. Но предварительно его необходимо выпаять из платы.

    Если позволяют габариты блока, то его можно доработать заменой:

    • выпрямительных диодов повышенной мощности;
    • накопительных конденсаторов большей емкости и напряжения.

    Такие простые действия продлят ресурс работы, на который рассчитан импульсный блок питания, а его ремонт своими руками принесет несомненную пользу владельцу. Если у вас возникнут вопросы по этой теме, то воспользуйтесь разделом комментариев. Я отвечу.

    Ремонт импульсного блока питания

    Видеокамеры, как и автомобили, сейчас уже перестали быть предметами роскоши и перешли в разряд необходимых приборов. Но, если сама видеокамера изготовлена качественно и выход её из строя без каких-либо внешних причин – явление нечастое, то с блоками питания к ним всё как раз наоборот – «горят» они с завидным постоянством. И если ЗУ от сотовых телефонов мы покупаем, не задумываясь, то приобретение блока питания на нужное напряжение и силу тока может вызвать некоторые проблемы.

    Тем не менее, отказавший импульсный блок питания нередко можно восстановить самостоятельно.

    На фото – неисправный импульсный блок питания, модель FC-2000. Выходное напряжение БП – 12 вольт при нагрузке до 2 А, что вполне достаточно для питания одной-двух видеокамер. После двух с половиной лет работы в круглосуточном режиме на его выходе напряжение пропало полностью.

    Вскрыв корпус неисправного БП, мы обнаружим плату с установленными на ней деталями – среди них электролитический конденсатор ёмкостью от 10 до 47-68 мкФ и с рабочим напряжением 400-450 вольт; на его выводах даже спустя несколько минут остаётся достаточно большой заряд. Поэтому в первую очередь нужно закоротить его выводы через сопротивление номиналом в несколько кОм и мощностью выше 0,5Вт. Напрямую закорачивать выводы конденсатора нельзя, это может вывести его из строя. На фото в красном прямоугольнике – именно эта деталь. Поскольку донышко конденсатора вспучено, можно говорить о том, что первая неисправность обнаружена.

    Кроме упомянутого выше конденсатора фильтра сетевого выпрямителя, проверке подлежат и такие детали, как предохранитель, выпрямительный мост (может быть установлен либо выпрямительный блок, либо четыре отдельных диода, как на фото) и транзисторный ключ – на фото они заключены в зелёные прямоугольники.

    Читайте также:  Выбор ламината: как самостоятельно подобрать для дома покрытие под старое дерево?

    Рабочее напряжение нового конденсатора должно быть не ниже того, на которое был рассчитан заменяемый. Для проверки можно обойтись меньшей ёмкостью, но для обеспечения нормального режима работы блока питания этот параметр должен быть либо таким же, либо выше на одну позицию (т.е. ёмкость с 33 мкФ можно увеличить до 47 мкФ).

    Поскольку в описываемом случае детали высоковольтного выпрямителя и транзистор оказались исправными, то подаём на его вход сетевое напряжение. Если же пришлось менять диоды или транзистор, первое включение БП следует делать через последовательно подключённую лампу накаливания мощностью 25-40 Вт – благодаря этому при наличии скрытых неисправностей величина протекающего по цепям первичного питания тока не окажется фатальной.

    Подключаем к выводам вольтметр – напряжение в пределах нормы. Однако, подключив даже небольшую нагрузку, напряжение на выходе стало скачкообразно меняться от 5 до 11 вольт, что говорит о неисправности цепей стабилизации.

    Дальнейшая проверка выявила неисправность ещё одного электролитического конденсатора, установленного в цепи оптрона PC 817.

    Судя по фото, конденсатор потерял около 90 % своей ёмкости.

    После установки новых деталей тщательно смываем ацетоном или спиртом остатки флюса (канифоли, паяльной пасты и т.п.), чтобы избежать утечек тока и возможного пробоя и выгорания материала самой платы.

    Снова проверяем блок питания. На этот раз к его выводам подключена автомобильная лампа мощностью 21 Вт и током потребления около 2 ампер – БП рассчитан именно на такой номинальный рабочий ток. Как видно на фото, со своей задачей он справился на «отлично», лампочка ярко горит, к тому же удалось сэкономить 200-300 рублей и время, которое было бы потрачено на поиски нового импульсного блока питания.

    Пошаговый ремонт блока питания компьютера своими руками

    БП компьютера – вещь капризная и из строя выходит чаще остальных комплектующих. А чтобы не тратить лишние деньги, можно попытаться его отремонтировать. О том, как произвести ремонт компьютерного блока питания и пойдет речь в этой статье.

    Пошаговая инструкция

    Помните, что ремонт блоков питания для пк – процесс опасный. Получить (хоть и не смертельный) удар током — вряд ли кому-то хочется. Поэтому, во избежание травм, соблюдайте эти правила:

    1. Естественно, перед тем, как вскрыть блок питания – отключите его от сети.
    2. Нельзя трогать конденсаторы и радиаторы сразу после отключения. Поражение током обеспечено! Конденсаторы могут долго сохранять заряд, поэтому их нужно разрядить отверткой или другим металлическим предметом с изоляцией. Аналогично ток может передаваться на металлические радиаторы.
    3. Только инструмент с диэлектрическим покрытием.
    4. Чтобы избежать внезапного взрыва БП, на место предохранителя лучше поставить 100 Вт лампу накаливания. При включения она должна включиться и сразу отключиться. Если она горит – значит на плате КЗ.
    5. На всякий случай не стоит держать рядом с блоком огнеопасные жидкости. Они вполне могут спровоцировать пожар.

    Теперь можно перейти к ремонту импульсного блока питания своими руками.

    Осмотр

    Как разобрать блок питания компьютера? Обычной крестовой отверткой нужно открутить винтики. Некоторые могут прятаться под гарантийными пломбами.

    Кстати, если гарантия действует, неисправности блока питания лучше решить в сервисном центре.

    Итак, блок питания для компьютера вскрыт. Что мы видим? Структурная схема выглядит так:

    Стоит ее разделить на 5 секций:

    1. А. Диодный мост. Он необходим для инверсии переменного напряжения в постоянный.
    2. В. Конденсатор силового типа. Его задача в сглаживании импульс, то есть срезке импульсов.
    3. С. Трансформатор, понижающий напряжение до необходимых 12 вольт из 220.
    4. D. Дроссельная группа. Они сглаживают помехи, образующиеся на выходе.
    5. Е. Конденсаторы, которые выполняют ту же функцию, что и дроссели.

    Между сектором В и С находится крупный радиатор с ключами. Вот и все устройство блока питания компьютера.

    Теперь нужно осмотреть «пациента». Если он сильно запылен, а кулер не крутится – вот и неисправность. Его нужно вычистить, а вентилятор смазать силиконовой смазкой. После этого можно нажать на кнопку пуска(о том, как запустить компьютерный блок питания без ПК- читайте ниже) Если нет – осматриваем дальше.

    Если блок питания не работает после чистки, стоит поискать пятна нагара, неисправные кондеры (их головка с крестиком будет не плоской, а выпуклой), потемнение обмоток, сорванные дорожки.

    Диагностика

    Блок питания не включается — и это единственный диагноз. Пришло время перейти к выявлению неисправностей.

    Предохранитель

    Сначала нужно проверить его. Обычно используется предохранитель с нитью и выглядит он так.

    Проверить его просто: нужна прозвонка мультиметром. Если писк есть – значит проблема не в нем. Если нет – значит был пробой.

    Иногда ремонт бп компьютера заканчивается на этом, но чаще перегоревший предохранитель – лишь симптом. В этом случае необходимо проверить всю высоковольтную часть блока. А именно: диодный мост и транзисторные ключи.

    Вористор

    Формально – еще один предохранитель. При резком превышении по вольтажу, он снижает сопротивление. Но при этом импульс дальше не идет, а рассеивается в виде тепла.

    Определить его поломку несложно. В случае перенапряжения он взрывается или трескается, пачкая копотью близлежащие элементы. Можно его выпаять и запустить блок питания. Если работает – значит ремонт закончен.

    Диодный мост

    Дешевые блоки питания от компьютера часто страдают от плохих мостов. Но чтобы проверить его – выпаивать ничего не нужно. Прозвонка должна показать такой результат:

    1. В прямом направлении замечается падение тока в 500 миллиампер.
    2. В обратном сигнала нет – фиксируется, как разрыв.

    Звонить нужно в этом направлении:

    Кстати, не всегда диодный мост выглядит так. Он может состоять из 4 диодов, не связанных в одном корпусе, но суть та же.

    Конденсаторы

    Если блок питания не запускается с первого раза, но все же пуск идет – значит вышли из строя дежурные конденсаторы. Это можно диагностировать, даже не вскрывая корпус.

    На глаз испорченные «кондеры» легко определить – будет нарушен корпус. Это будет выглядеть так:

    1. Взорванный корпус по крестику и вытекший электролит. Кстати, об этом еще подскажет характерный запах.
    2. Сильное вздутие крышки.
    3. Слабозаметное вздутие. Самая «вредная» проблема, ведь можно не понять, почему же не работает блок питания. Даже малейшее, незаметное вздутие говорит о поломке.

    В этом случае ремонт блока питания компьютера своими руками пошагово выглядит так:

    1. Конденсатор необходимо выпаять.
    2. На корпусе будет пометка с емкостью (мкФ) и напряжением в вольтах. В радиомагазине достаточно купить аналогичный. Допускается небольшое превышение по емкости и вольтажу.
    3. Новый конденсатор устанавливается обратно. На пленке «минус» маркируется полоской.

    Резистор

    Как и вористоры, резисторы взрываются при поломке. В этом случае ремонт импульсного блока питания на 12 вольт заключается в перепайке на аналогичный.

    Нужно брать с аналогичным сопротивлением и даже малейшие отклонения будут фатальными. Но при взрыве маркировка почти незаметна. Здесь есть 2 выхода:

    • Нужна принципиальная схема блока питания компьютера. К сожалению, на дешевых моделях найти ее почти невозможно. Для примера, вот так выглядит схема компьютерного блока питания на 300w. Схема БП на 350W будет отличаться, поэтому они не заменяемы. Поискать их можно здесь.
    • Определить маркировку. Если пометки остались, то по цветам получится определить номинал. Вот таблица цветов и значений. Для этого резистор стоит выпаять из блока.

    Диоды

    Просто нужно прозвонить. Если в обе стороны мультиметр показывает обрыв – они идут под замену.

    Дроссели

    Часто блок питания не работает, потому что сгорает обмотка дросселя из-за неправильной работы кулера. Определить их выход из строя можно по нагару на лаке. Их можно выпаять и купить новые или вообще перемотать.

    Трансформатор

    Проверить трансформатор можно только одним способом – прозвонкой выводов. Если контакта нет – он идет под замену. Другие неисправности вряд ли получится починить самостоятельно.

    Кстати, если запуск блока питания ранее сопровождался сильным горелым запахом, значит проблема в трансформаторе. Но выходят из строя они редко.

    Проблема ШИМ-контроллеров в том, что их сложно диагностировать без осциллографа. Нужна полная картина импульсной модуляции.

    Остается замерить дежурное питание с ШИМ-контроллера. Понадобится узнать название (например, SG6105, 1200p60) и найти его по номеру даташит (Datasheet). Там будет схема всех ножек и выглядит она так:

    Далее минусовой щуп мультиметра нужно опустить на землю, а плюсовым пройтись по следующим контактам: V3.3; V5; V12; ОРР. Если в режиме измерения сопротивления оно слишком малое, то его нужно заменить.

    Если на нем есть тращины или он сильно греется — ремонт импульсных блоков питания своими руками сводится к простой замене без прозвонки.

    Сборка и проверка работоспособности блока питания ПК

    Что ж, неисправность устранена и теперь нужно проверить. Запускать с ПК не стоит — можно его повредить. А как запустить компьютерный блок питания без компьютера? Это вполне возможно и понадобится только вооружиться перемычкой.

    Так как запустить бп без пк? По инструкции:

    1. Блок подключается к сети.
    2. Распиновка блока питания компьютера выглядит так. Перемычкой из скрепки нужно закоротить зеленый и любой черный контакт.

    Распиновка компьютерного блока питания стандартизированная, поэтому трюк работает с любыми БП.

    Теперь нужно нажать кнопку питания и все. Но перед тем, как запустить блок питания компьютера, нужна хоть какая-то нагрузка. Например, жесткий диск или оптический привод. Иначе есть вероятность, что БП просто взорвется.

    Если не запускается блок питания компьютера, попробуйте поменять черный контакт. Распиновка бп компьютера АТХ использует его в качестве земли.

    Импульсные блоки питания – устройство и ремонт

    Сервисный центр Комплэйс выполняет ремонт импульсных блоков питания в самых разных устройствах.

    Схема импульсного блока питания

    Импульсные блоки питания используются в 90% электронных устройств. Но для ремонта импульсных блоков питания нужно знать основные принципы схемотехники. Поэтому приведем схему типичного импульсного блока питания.

    Работа импульсного блока питания

    Первичная цепь импульсного блока питания

    Первичная цепь схемы блока питания расположена до импульсного ферритового трансформатора.

    На входе блока расположен предохранитель.

    Затем стоит фильтр CLC. Катушка, кстати, используется для подавления синфазных помех. Вслед за фильтром располагается выпрямитель на основе диодного моста и электролитического конденсатора. Для защиты от коротких высоковольтных импульсов после предохранителя параллельно входному конденсатору устанавливают варистор. Сопротивление варистора резко падает при повышенном напряжении. Поэтому весь избыточный ток идет через него в предохранитель, который сгорает, выключая входную цепь.

    Защитный диод D0 нужен для того, чтобы предохранить схему блока питания, если выйдет из строя диодный мост. Диод не даст пройти отрицательному напряжению в основную схему. Потому, что откроется и сгорит предохранитель.

    За диодом стоит варистор на 4-5 ом для сглаживания резких скачков потребления тока в момент включения. А также для первоначальной зарядки конденсатора C1.

    Активные элементы первичной цепи следующие. Коммутационный транзистор Q1 и с ШИМ (широтно импульсный модулятор) контроллер. Транзистор преобразует постоянное выпрямленное напряжение 310В в переменное. Оно преобразуется трансформатором Т1 на вторичной обмотке в пониженное выходное.

    И еще – для питания ШИМ-регулятора используется выпрямленное напряжение, снятое с дополнительной обмотки трансформатора.

    Работа вторичной цепи импульсного блока питания

    Во выходной цепи после трансформатора стоит либо диодный мост, либо 1 диод и CLC фильтр. Он состоит из электролитических конденсаторов и дросселя.

    Для стабилизации выходного напряжения используется оптическая обратная связь. Она позволяет развязать выходное и входное напряжение гальванически. В качестве исполнительных элементов обратной связи используется оптопара OC1 и интегральный стабилизатор TL431. Если выходное напряжение после выпрямления превышает напряжение стабилизатора TL431 включается фотодиод. Он включает фототранзистор, управляющий драйвером ШИМ. Регулятор TL431 снижает скважность импульсов или вообще останавливается. Пока напряжение не снизится до порогового.

    Ремонт импульсных блоков питания

    Неисправности импульсных блоков питания, ремонт

    Исходя из схемы импульсного блока питания перейдем к ее ремонту. Возможные неисправности:

    1. Если сгорел варистор и предохранитель на входе или VCR1, то ищем дальше. Потому, что они так просто не горят.
    2. Сгорел диодный мост. Обычно это микросхема. Если есть защитный диод, то и он обычно горит. Нужна их замена.
    3. Испорчен конденсатор C1 на 400В. Редко, но бывает. Часто его неисправность можно выявить по внешнему виду. Но не всегда. Иногда внешне исправный конденсатор оказывается плохим. Например, по внутреннему сопротивлению.
    4. Если сгорел переключающий транзистор, то выпаиваем и проверяем его. При неисправности требуется замена.
    5. Если не работает ШИМ регулятор, то меняем его.
    6. Замыкание, а также обрыв обмоток трансформатора. Шансы на починку минимальны.
    7. Неисправность оптопары – крайне редкий случай.
    8. Неисправность стабилизатора TL431. Для диагностики замеряем сопротивление.
    9. Если КЗ в конденсаторах на выходе блока питания, то выпаиваем и диагностируем тестером.

    Примеры ремонта импульсных блоков питания

    Например, рассмотрим ремонт импульсного блока питания на несколько напряжений.

    Неисправность заключалась в в отсутствии на выходе блока выходных напряжений.

    Например, в одном блоке питания оказались неисправны два конденсатора 1 и 2 в первичной цепи. Но они не были вздутыми.

    На втором не работал ШИМ контроллер.

    На вид все конденсаторы на снимке рабочие, но внутреннее сопротивление у них большое. Более того, внутреннее сопротивление ESR конденсатора 2 в кружке оказалось в несколько раз выше номинального. Этот конденсатор стоит в цепи обвязки ШИМ регулятора, поэтому регулятор не работал. Работоспособность блока питания восстановилась только после замены этого конденсатора. Потому что ШИМ заработал.

    Ремонт компьютерных блоков питания

    Пример ремонта блока питания компьютера. В ремонт поступил дорогой блок питания на 800 Вт. При его включении выбивало защитный автомат.

    Выяснилось, что короткое замыкание вызывал сгоревший транзистор в первичной цепи питания. Цена ремонта составила 3000 руб.

    Имеет смысл чинить только качественные дорогие компьютерные блоки питания. Потому что ремонт БП может оказаться дороже нового.

    Цены на ремонт импульсных БП

    Цены на ремонт импульсных блоков питания очень отличаются. Дело в том, что существует очень много электрических схем импульсных блоков питания. Особенно много отличий в схемах с PFC (Power Factor Correction, коэффициент коррекции мощности). ЗАС повышает КПД.

    Но самое важное – есть ли схема на сгоревший блок питания. Если такая электрическая схема есть в доступе, то ремонт блока питания существенно упрощается.

    Стоимость ремонта колеблется от 1000 рублей для простых блоков питания. Но достигает 10000 рублей для сложных дорогих БП. Цена определяется сложностью блока питания. А также сколько элементов в нем сгорело. Если все новые БП одинаковые, то все неисправности разные.

    Например, в одном сложном блоке питания вылетело 10 элементов и 3 дорожки. Тем не менее его удалось восстановить, причем цена ремонта составила 8000 рублей. Кстати, сам прибор стоит порядка 1 000 000 рублей. Таких блоков питания в России не продают.

    Не смогли починить БП? Обращайтесь в Комплэйс.

    Устройство китайских зарядок для ноутбуков описано здесь.

    Ссылка на основную публикацию