Делитель напряжения: расчет делителя напряжения на резисторах, конденсаторах и индуктивностях

Делитель напряжения на резисторах. Формула расчета, онлайн калькулятор

Делитель напряжения — это простая схема, которая позволяет получить из высокого напряжения пониженное напряжение.

Используя только два резистора и входное напряжение, мы можем создать выходное напряжение, составляющее определенную часть от входного. Делитель напряжения является одной из наиболее фундаментальных схем в электронике. В вопросе изучения работы делителя напряжения следует отметить два основных момента – это сама схема и формула расчета.

Схема делителя напряжения на резисторах

Схема делителя напряжения включает в себя входной источник напряжения и два резистора. Ниже вы можете увидеть несколько схематических вариантов изображения делителя, но все они несут один и тот же функционал.

Обозначим резистор, который находится ближе к плюсу входного напряжения (Uin) как R1, а резистор находящийся ближе к минусу как R2. Падение напряжения (Uout) на резисторе R2 — это пониженное напряжение, полученное в результате применения резисторного делителя напряжения.

Расчет делителя напряжения на резисторах

Расчет делителя напряжения предполагает, что нам известно, по крайней мере, три величины из приведенной выше схемы: входное напряжение и сопротивление обоих резисторов. Зная эти величины, мы можем рассчитать выходное напряжение.

Формула делителя напряжения

Это не сложное упражнение, но очень важное для понимания того, как работает делитель напряжения. Расчет делителя основан на законе Ома.

Для того чтобы узнать какое напряжение будет на выходе делителя, выведем формулу исходя из закона Ома. Предположим, что мы знаем значения Uin, R1 и R2. Теперь на основании этих данных выведем формулу для Uout. Давайте начнем с обозначения токов I1 и I2, которые протекают через резисторы R1 и R2 соответственно:

Наша цель состоит в том, чтобы вычислить Uout, а это достаточно просто используя закон Ома:

Хорошо. Мы знаем значение R2, но пока неизвестно сила тока I2. Но мы знаем кое-что о ней. Мы можем предположить, что I1 равно I2. При этом наша схема будет выглядеть следующим образом:

Что мы знаем о Uin? Ну, Uin это напряжение на обоих резисторах R1 и R2. Эти резисторы соединены последовательно, при этом их сопротивления суммируются:

И, на какое-то время, мы можем упростить схему:

Закон Ома в его наиболее простом виде: Uin = I *R. Помня, что R состоит из R1+R2, формула может быть записана в следующем виде:

А так как I1 равно I2, то:

Это уравнение показывает, что выходное напряжение прямо пропорционально входному напряжению и отношению сопротивлений R1 и R2.

Делитель напряжения — калькулятор онлайн

Применение делителя напряжения на резисторах

В радиоэлектронике есть много способов применения делителя напряжения. Вот только некоторые примеры где вы можете обнаружить их.

Потенциометры

Потенциометр представляет собой переменный резистор, который может быть использован для создания регулируемого делителя напряжения.

Изнутри потенциометр представляет собой резистор и скользящий контакт, который делит резистор на две части и передвигается между этими двумя частями. С внешней стороны, как правило, у потенциометра имеется три вывода: два контакта подсоединены к выводам резистора, в то время как третий (центральный) подключен к скользящему контакту.

Если контакты резистора подключения к источнику напряжения (один к минусу, другой к плюсу), то центральный вывод потенциометра будет имитировать делитель напряжения.

Переведите движок потенциометра в верхнее положение и напряжение на выходе будет равно входному напряжению. Теперь переведите движок в крайнее нижнее положение и на выходе будет нулевое напряжение. Если же установить ручку потенциометра в среднее положение, то мы получим половину входного напряжения.

Резистивные датчики

Большинство датчиков применяемых в различных устройствах представляют собой резистивные устройства. Фоторезистор представляет собой переменный резистор, который изменяет свое сопротивление, пропорциональное количеству света, падающего на него. Так же есть и другие датчики, такие как датчики давления, ускорения и термисторы и др.

Так же резистивный делитель напряжения помогает измерить напряжение при помощи микроконтроллера (при наличии АЦП).

Пример работы делителя напряжения на фоторезисторе.

Допустим, сопротивление фоторезистора изменяется от 1 кОм (при освещении) и до 10 кОм (при полной темноте). Если мы дополним схему постоянным сопротивлением примерно 5,6 кОм, то мы можем получить широкий диапазон изменения выходного напряжения при изменении освещенности фоторезистора.

Как мы видим, размах выходного напряжения при уровне освещения от яркого до темного получается в районе 2,45 вольт, что является отличным диапазоном для работы большинства АЦП.

33 комментария

Короче,делитель напряжения — это следящая ( сравнивающая ) цепочка в системах автоматического регулирования. Её можно увидеть в регуляторах напряжеия генераторов.

Отличная статья, жаль, что про рассеиваемую мощность не сказано ни слова.

спасибо,понравилось.вопрос-схема где показаны способы присоединения делителей
правый(внизу) измеряют снимаемое (Uout) c
Uout и минуса входящего?

Просто и понятно описано, чтобы понять даже ребенку.

За калькуляторы отдельное спасибо — очень удобно!

Увы. Врет калькулятор безбожно!
Пытался рассчитать делитель с 6В на 2.5В.
Жаль нельзя скриншот вставить.
Результаты:
По формуле 1: R1 = 4.8K, R2 = 22K, Vin = 6В, Vout = 4.4В. (Значения резисторов взяты из результатов формулы 3)
По формуле2: Vin = 6В, Vout = 2.5В, R1+R2 = 26,4K. Результат: R1 = 666,667, R2 = 3,333K. В сумме ну никак не 26К, которые в исходных данных забиты.
По формуле3: Vin=6B, Vout = 2,5B, R2=22K. Результат: R1 = 4,4K. (при расчете вручную 30800)
Т.е. результаты ну совсем рядом не стояли. А по идее формулы должны сходные результаты давать.
Кроме этого, в формуле 1. R1 указано 4.8К, при этом Vout = 4.4В. Если указать R1 4.84, то результат уже 1.245. Добавили 0.04К, а напряжение упало аж в 4 раза? А если добавить еще 0.004К, то на выходе уже 152 мВ. Т.е. в 10 раз меньше предыдущего.
В общем не фонтан.

Читайте примечание внизу калькулятора…

для корректной работы калькулятора, в качестве разделительного знака в водимых значениях надо ставить точку, а не запятую. пример: 1,5 — неверно; 1.5 — верно.

В первом калькуляторе значения R1 и R2 перепутаны

вполне приличный калькулятор.спасибо.

Спасибо за отличный и удобный калькулятор!

Рассчитать резистор R2 для выходного напряжения (Uout) и резистора R1-добавить для удобства расчетов

смысла формулы не пойму , почему в делителе нужно умножать именно на R2, Ток течет от плюса к минусу чисто условно, он с таким же успехом идет и наоборот, Впечатление , что формула хоть и верная но притянута за уши .

При умножении на R1 ты вычислишь разницу напряжений Uin-Uout

А как будет влиять на систему нагрузка? Она снизит сопротивление цепи.

Без учета нарузки это сферический конь в вакууме.

Сама идея создать калькуляторы хорошая.
Только вот изначально необходимо вводить условие нагрузки. Без этого такие калькуляторы совершенно бессмысленные, и годятся разве что для демонстрации закона Ома.
И хорошо бы сделать калькулятор на несколько коэффициентов деления, например 1:1 — 1:10 — 1:100 — 1:1000, и конечно же с условием входного сопротивления нагрузки.
И в этом же калькуляторе должны быть строки для отображения мощности рассеяния резисторов делителя.
И при этом необходимо ещё учитывать температуру резисторов. Собственно, все проекты начинаются с задания диапазона рабочих температур. А иначе при работе все эти резисторы перекосит по сопротивлению напрочь.
Вобщем, в таком виде это не калькуляторы, а бессмысленные игрушки.

Блин, ребята! Такие делители применяются исключительно для задания какого-нибудь опорного напряжения для компаратора или для задания точки смещения транзистора. В таких условиях просто принимается что сопротивление нагрузки (т.е. входа этого самого компаратора) на порядки больше, и, соответственно сопротивление такой нагрузки почти не влияет на конечный результат. Да и отклонение резисторов а также температурный дрейф будут вносить бОльшие искажения, нежели сопротивление входа компаратора. А если требуется более точное напряжение, то ставят точные стабилитроны или вобще специализированную микросхему — ИОН (источник опорного напряжения). Но никто через такие делители не запитывает именно полноценную нагрузку. Частный случай такого делителя, это если вместо нижнего резистора ставится стабилитрон. Тогда расчёт по мощности упирается в допустимую мощность стабилитрона, а мощность нагрузки должа быть в разы меньше, т.е. таким образом можно разве что подать питание на одну-две микросхемы маломощные.

отличная подборка, присоединюсь к уже озвученному, жаль нет расчёта по мощности )))

да кстати сколько ват рассеит резистор как посчитать?

Тупит ваш калькулятор, у меня практическая схема R1=260 Ом 10W, R2=120 Ом 5W, при входном 56В на выходе 18В. Мигалка для электропогрузчика с бортовым 56В. Ваш калькулятор перекрывает выходные значения сообщением о мощности и величине сопротивления.

Прям сразу и тупит?
То что действительно выскакивает сообщение с предупреждением и перекрывает область вывода результата вычисления я подтверждаю — косяк неотлаженный.
Да и само это предупреждение, на мой взгляд, излишнее — рассеиваемая мощность — этот вопрос решается подбором суммы сопротивлений резисторов R1 и R2 исходя из цели делителя.

Спасибо за замечание. Предупреждение отключил..

Вам спасибо за отличную статью!
Просмотрел все комментарии и больше не нашел обоснованных претензий и считаю что с ликбезом Вы отлично справились, еще раз спасибо!
Калькуляторы в данной статье я рассматриваю как бонусы от автора, самое ценное в статье — это разжеванная методика расчета делителя напряжения.

Хороший калькулятор, спасибо автору. Но для полного удобства не хватает расчёта R2 при известном R1 и напряжениях. Как раз столкнулся с такой задачей, пришлось решать методом перебора с последовательным приближением. Все равно это будет переменный резистор, главное понять какой туда повесить чтобы покрыть весь диапазон выходных напряжений, не рискуя разорвать ОС при «шуршании» бегунка резистора (регулируемый БП).

Нужно еще один калькулятор — чтобы по Uin, Uout и I выдавал нужные сопротивления (когда нужно, чтобы ток был определенной величины — не больше заданной, но и не на порядки меньше: например, ток 10мА при 10В->3В, если брать килоомные сопротивления, меня не устраивает)

Найдем сумму сопротивлений:
10В / 10ма = 1000 Ом.
Подставляем известные и найденное значения во второй калькулятор и в-у-аля!
Нет предела совершенства любой программы — это известный факт.
И самому иногда мозгом пошевелить полезно!

Согласен с IBM5170. Не хватает расчёта R2 при известном R1 и напряжениях. Но, если вместо Vout вставить Vin-Vout, а вместо R2 известное R1, то получаем значение R2.

Читайте также:  Гидроизоляция на цементной основе: полимерная обмазочная продукция на основе цемента, Ceresit CR 65 - расход,

благодарю — то что надо

посчитать рассеиваемую мощность резисторов делителя можно, зная ток через делитель, падение напряжения на каждом резисторе. умножаете ток на напряжение получаете мощность на каждом резисторе. Только соблюдайте одну размерность. Второй закон Кирхгофа

Столько грамотеев собралось посмеяться над своей бестолковостью. Зачем вам формулы, вы же далеки от электротехники и вообще от техники. А все туда же — поиск соринки в чужом глазу. Свои глаза сначала просуши от безграмотности

Отличный калькулятор, огромное спасибо автору, не надо париться и рассчитывать по формулам

Делитель напряжения на резисторах, конденсаторах и индуктивностях

С целью получения фиксированного значения напряжения, равного доле от исходного значения, в электрических цепях применяют делители напряжения. Делители напряжения могут состоять из двух или более элементов, которыми могут служить резисторы либо реактивные сопротивления (конденсаторы или катушки индуктивности).

Делитель напряжения — комбинация из сопротивлений, служащая для того, чтобы разделить подводимое напряжение на части.

В простейшем виде делитель напряжения представляется парой участков электрической цепи, соединенных последовательно друг с другом, которые и называются плечами делителя. Верхним плечом называется тот участок, который расположен между точкой положительного напряжения и выбранной точкой соединения участков, а нижним плечом — участок между точкой соединения (выбранной точкой, нулевой точкой) и общим проводом.

Делители напряжения на резисторах

Конечно, делители напряжения могут применяться как в цепях постоянного тока, так и в цепях тока переменного. Делители на резисторах подходят и для тех, и для других цепей, однако используются они только в цепях низкого напряжения. Для питания устройств делители напряжения на резисторах не применяют.

В простейшем виде резистивный делитель напряжения состоит всего из пары резисторов, соединенных последовательно. Делимое напряжение подается на делитель, в результате на каждом резисторе падает определенная доля этого напряжения, пропорциональная номиналу резистора. Сумма падений напряжений равна здесь напряжению подаваемому на делитель.

Согласно закону Ома для участка электрической цепи, на каждом резисторе падение напряжения будет прямо пропорционально току и величине сопротивления резистора. А согласно первому правилу Кирхгофа, ток через данную цепь будет везде один и тот же. Так, на каждый резистор придутся падения напряжения:

И напряжение на концах участка цепи будет равно:

А ток в цепи делителя составит:

Теперь если подставить выражение для тока в формулы для падений напряжений на резисторах, то получим формулы для нахождения величин напряжений на каждом из резисторов делителя:

Подбирая величины сопротивлений R1 и R2 можно выделить любую часть всего подводимого напряжения. В том случае, когда напряжение нужно разделить на несколько частей, последовательно с источником напряжения включается несколько сопротивлений.

Используя делитель напряжения на резисторах для тех или иных целей, важно понимать, что присоединенная к одному из плеч делителя нагрузка, будь то измерительный прибор или что-нибудь другое, должна иметь собственное сопротивление значительно большее, чем общее сопротивление резисторов, образующих делитель. В противном случае сопротивление нагрузки само должно учитываться в расчетах, будучи рассмотрено как параллельный плечу резистор, входящий в состав делителя.

Пример: есть источник постоянного напряжения 5 вольт, необходимо подобрать к нему резисторы для делителя напряжения, чтобы снимать с делителя измерительный сигнал величиной в 2 вольта. Допустимая рассеиваемая на делителе мощность не должна превышать 0,02 Вт.

Решение: Пусть максимальная мощность, рассеиваемая на делителе, равна 0,02 Вт, тогда минимальное общее сопротивление делителя при 5 вольтах найдем из закона Ома, оно получится равно 1250 Ом. Пусть 1,47 кОм — выбранное нами общее сопротивление делителя, тогда 2 вольта упадет на 588 омах. Выберем постоянный резистор на 470 Ом и переменный на 1 кОм. Установим на переменном резисторе значение в 588 Ом.

Делители напряжения на резисторах широко применяются сегодня в электронных схемах. На этих схемах значения величин резисторов для делителей выбираются исходя из параметров активных элементов схем. Как правило, делители стоят в измерительных цепях схем, в цепях обратной связи преобразователей напряжения и т. д. Минус таких решений заключается в том, что резисторы рассеивают на себе мощность в виде тепла, однако целесообразность оправдывает эти малые потери энергии.

Делители напряжения на конденсаторах

В цепях переменного тока, в высоковольтных схемах, применяют делители напряжения на конденсаторах. Здесь используется реактивный характер сопротивления конденсаторов в цепях переменного тока. Величина реактивного сопротивления конденсатора в цепи переменного тока зависит от электроемкости конденсатора и от частоты напряжения. Вот формула для нахождения этого сопротивления:

Формула свидетельствует о том, что чем больше электроемкость конденсатора — тем его реактивное (емкостное) сопротивление меньше и чем выше частота — тем так же меньше реактивное сопротивление. Такие делители используются в измерительных схемах цепей переменного тока, падения напряжений на плечах считается аналогично случаю с постоянными активными сопротивлениями (резисторами, см. выше).

Достоинство конденсаторов, применяемых в делителях, состоит в том, что рассеивание энергии в форме тепла получается минимальным, и зависит только от качества диэлектрика.

Делитель напряжения на индуктивностях

Индуктивный делитель напряжения — еще один вид делителей, применяемых в измерительной электронике переменного тока, особенно в низковольтных схемах, работающих на высоких частотах. Сопротивление катушек для переменного тока высокой частоты носит преимущественно реактивный (индуктивный) характер, оно находится по формуле:

Формула свидетельствует о том, что чем больше индуктивность и чем выше частота — тем выше сопротивление катушки переменному току. Здесь важно понимать, что провод катушки имеет активное сопротивление, поэтому мощность, рассеиваемая в виде тепла, свойственная делителю на индуктивностях, значительно выше, чем у делителей на конденсаторах.

В любительской электронике делители напряжения часто используются при подключении аналоговых датчиков к модулям Ардуино.

Что такое делитель напряжения и как его рассчитать?

Бюджетным вариантом преобразования основных параметров электрического тока являются делители напряжения. Такое устройство легко изготовить самостоятельно, но чтобы сделать это, нужно знать назначение, случаи применения, принцип работы и примеры расчетов.

Назначение и применение

Для преобразования переменного напряжения применяется трансформатор, благодаря которому можно сохранить достаточно высокое значение тока. Если необходимо в электрическую цепь подключить нагрузку, потребляющую небольшой ток (до сотен мА), то использование трансформаторного преобразователя напряжения (U) не является целесообразным.

В этих случаях можно использовать простейший делитель напряжения (ДН), стоимость которого существенно ниже. После получения необходимой величины U выпрямляется и происходит подача питания на потребитель. При необходимости для увеличения силы тока (I) нужно использовать выходной каскад увеличения мощности. Кроме того, существуют делители и постоянного U, но эти модели применяются реже остальных.

ДН часто применяются для зарядок различных устройств, в которых нужно получить из 220 В более низкие значения U и токов для разного типа аккумуляторов. Кроме того, целесообразно использовать устройства для деления U для создания электроизмерительных приборов, компьютерной техники, а также лабораторных импульсных и обыкновенных блоков питания.

Принцип работы

Делитель напряжения (ДН) является устройством, в котором осуществляется взаимосвязь выходного и входного U при помощи коэффициента передачи. Коэффициент передачи — отношение значений U на выходе и на входе делителя. Схема делителя напряжения проста и представляет собой цепочку из двух последовательно соединенных потребителей — радиоэлементов (резисторов, конденсаторов или катушек индуктивности). По выходным характеристикам они отличаются.

У переменного тока существуют такие главные величины: напряжение, сила тока, сопротивление, индуктивность (L) и емкость (C). Формулы расчета основных величин электричества (U, I, R, C, L) при последовательном подключении потребителей:

  1. Значения сопротивлений складываются;
  2. Напряжения складываются;
  3. Ток будет вычисляться по закону Ома для участка цепи: I = U / R;
  4. Индуктивности складываются;
  5. Емкость всей цепочки конденсаторов: C = (C1 * C2 * .. * Cn) / (C1 + C2 + .. + Cn).

Для изготовления простого резисторного ДН и используется принцип последовательно включенных резисторов. Условно схему можно разделить на 2 плеча. Первое плечо является верхним и находится между входом и нулевой точкой ДН, а второе — нижним, с него и снимается выходное U.

Сумма U на этих плечах равна результирующему значению входящего U. ДН бывают линейного и нелинейного типов. К линейным относятся устройства с выходным U, которое изменяется по линейному закону в зависимости от входной величины. Они применяются для задания нужных U в различных частях схем. Нелинейные применяются в функциональных потенциометрах. Их сопротивление может быть активным, реактивным и емкостным.

Кроме того, ДН может быть еще и емкостным. В нем используется цепочка из 2 конденсаторов, которые соединены последовательно.

Его принцип работы основан на реактивной составляющей сопротивления конденсаторов в цепи тока с переменной составляющей. Конденсатор обладает не только емкостными характеристиками, но и сопротивлением Xc. Это сопротивление называется емкостным, зависит от частоты тока и определяется по формуле: Xc = (1 / C) * w = w / C, где w — циклическая частота, C — значение конденсатора.

Циклическая частота вычисляется по формуле: w = 2 * ПИ * f, где ПИ = 3,1416, а f — частота переменного тока.

Конденсаторный, или емкостной, тип позволяет получать сравнительно большие токи, чем с резистивных устройств. Он получил широкое применение в высоковольтных цепях, в которых значение U необходимо снизить в несколько раз. Кроме того, он обладает существенным преимуществом — не перегревается.

Индуктивный тип ДН основан на принципе электромагнитной индукции в цепях тока с переменной составляющей. Ток протекает по соленоиду, сопротивление которого зависит от L и называется индуктивным. Его значение прямо пропорционально зависит от частоты переменного тока: Xl = w * L, где L — значение индуктивности контура или катушки.

Индуктивный ДН работает только в цепях с током, у которого есть переменная составляющая, и обладает индуктивным сопротивлением (Xl).

Преимущества и недостатки

Основными недостатками резистивного ДН являются невозможность его применения в высокочастотных цепях, существенное падение напряжений на резисторах и уменьшение мощности. В некоторых схемах нужно подбирать мощность сопротивлений, так как происходит существенный нагрев.

В большинстве случаев в цепях переменного тока применяются ДН с активной нагрузкой (резистивные), но с использованием компенсационных конденсаторов, подключенных параллельно к каждому из резисторов. Этот подход позволяет уменьшить нагрев, но не убирает основной недостаток, который заключается в потере мощности. Преимуществом является применение в цепях постоянного тока.

Для исключения потери мощности на резистивном ДН активные элементы (резисторы) следует заменить емкостными. Емкостный элемент относительно резистивного ДН обладает рядом преимуществ:

  1. Применяется в цепях переменного тока;
  2. Отсутствует перегрев;
  3. Потеря мощности снижена, так как конденсатор не обладает, в отличие от резистора, мощностью;
  4. Возможно применение в высоковольтных источниках напряжения;
  5. Высокий коэффициент полезного действия (КПД);
  6. Меньшие потери по I.
Читайте также:  Идеи для бизнеса в 14 лет

Недостатком является невозможность применения в схемах с постоянным U. Это связано с тем, что конденсатор в цепях с постоянным током не обладает емкостным сопротивлением, а лишь выступает в качестве емкости.

Индуктивный ДН в цепях с переменной составляющей также обладает рядом преимуществ, но его можно использовать и в цепях с постоянным значением U. Катушка индуктивности обладает сопротивлением, но из-за индуктивности этот вариант не подходит, так как происходит существенное падение U. Основные преимущества по сравнению с резистивным типом ДН:

  1. Применение в сетях с переменным U;
  2. Незначительный нагрев элементов;
  3. Потеря мощности в цепях переменного тока меньше;
  4. Сравнительно высокий КПД (выше емкостных);
  5. Использование в высокоточной измерительной аппаратуре;
  6. Обладает меньшей погрешностью;
  7. Нагрузка, подключенная к выходу делителя, не влияет на коэффициент деления;
  8. Потери по току меньше, чем у емкостных делителей.

К недостаткам следует отнести следующие:

  1. Применение в сетях питания постоянного U приводит к существенным потерям по току. Кроме того, напряжение резко падает из-за расхода электрической энергии на индуктивность.
  2. Выходной сигнал по частотным характеристикам (без применения выпрямительного моста и фильтра) изменяется.
  3. Не применяется в высоковольтных цепях переменного тока.

Расчет делителя напряжения на резисторах конденсаторах и индуктивностях

После выбора типа делителя напряжения для расчета нужно воспользоваться формулами. При неверном расчете может сгореть само устройство, выходной каскад для усиления тока, потребитель. Последствия неправильных расчетов могут быть и хуже, чем выход из строя радиокомпонентов: пожар в результате короткого замыкания, а также поражение электрическим током.

При расчете и сборке схемы нужно четко соблюдать правила техники безопасности, проверять устройство перед включением на правильность сборки и не испытывать в сыром помещении (вероятность поражения током возрастает). Основной закон, используемый при расчетах, — закон Ома для участка цепи. Формулировка его следующая: сила тока прямо пропорциональна напряжению на участке цепи и обратно пропорциональна сопротивлению этого участка. Запись в виде формулы выглядит следующим образом: I = U / R.

Алгоритм для расчета делителя напряжения на резисторах:

  1. Общее напряжение: Uпит = U1 + U2, где U1 и U2 — значения U на каждом из резисторов.
  2. Напряжения на резисторах: U1 = I * R1 и U2 = I * R2.
  3. Uпит = I * (R1 + R2).
  4. Ток без нагрузки: I = U / (R1 + R2).
  5. Падение U на каждом из резисторов: U1 = (R1 / (R1 + R2)) * Uпит и U2 = (R2 / (R1 + R2)) * Uпит.

Значения R1 и R2 должны быть в 2 раза меньше, чем сопротивление нагрузки.

Для расчета делителя напряжения на конденсаторах можно воспользоваться формулами: U1 = (C1 / (C1 + C2)) * Uпит и U2 = (C2 / (C1 + C2)) * Uпит.

Аналогичны формулы для расчета ДН на индуктивностях: U1 = (L1 / (L1 + L2)) * Uпит и U2 = (L2 / (L1 + L2)) * Uпит.

Делители применяются в большинстве случаев с диодным мостом и стабилитроном. Стабилитрон — полупроводниковый прибор, выполняющий роль стабилизатора U. Диоды следует выбирать с обратным U выше допустимого в этой цепи. Стабилитрон выбирается согласно справочнику для необходимого значения напряжения стабилизации. Кроме того, перед ним необходимо включить в схему резистор, так как без него полупроводниковый прибор сгорит.

Емкостной делитель напряжения

Простейший емкостной делитель напряжения состоит из двух последовательно соединенных конденсаторов и используется для снижения величины U на отдельных элементах электрической цепи.

Делитель постоянного напряжения на конденсаторах чаще всего применяют многоуровневых инверторов напряжения, широко используемых как на электроподвижном составе, так и в других направлениях силовой электроники.

Главная сложность практического применения такой схемы (и всех подобных схем) заключается в невозможности обеспечения равномерного разряда конденсаторов, вследствие чего напряжения на них будет распределяться не поровну. Чем сильнее разряжен один конденсатор по сравнению с другим (иди с другими), тем большая разница в U будет на них, что наглядно отображает формула:

По этой причине подобные схемы крайне нестабильно работают и обязательно предусматривают узлов подзарядки конденсаторов с целью выравнивания напряжения на последних.

Емкостной делитель напряжения в цепи переменного тока

В радиоэлектронике в большей степени находят применение емкостные делители переменного напряжения.

Конденсатор, как и катушка индуктивности, относится к реактивному элементу, то есть потребляет реактивную мощность от источника переменного тока, в отличие от резистора, который является активным элементов и потребляет исключительно активную мощность.

Реактивный элемент

Здесь следует кратко пояснить разницу между активной и реактивной мощностями. Активная мощность выполняет полезную работу и реализуется только в том случае, когда ток и напряжение направлены в одном направлении и не отстают друг от друга, то есть находятся в одной фазе, что имеет место только на резисторе. На конденсаторе ток отстает от напряжения на угол φ = 90°. В результате чего ток напряжение находятся в противофазе, поэтому когда ток имеет максимальное значение напряжение равно нулю, а произведение этих двух величин дают мощность, которая в таком случае равна нулю, так как один из множителей равен нулю. Следовательно, мощность не потребляется.

Аналогичные процессы протекают и в цепи с катушкой индуктивности. Разница лишь в том, что на индуктивности i отстает от u на угол φ = 90°.

Реактивная мощность проявляется только в цепях переменного тока. Она составляет часть полной мощности и определяется по формуле:

Реактивная мощность в отличие от активной, не потребляется нагрузкой, а циркулирует между источником питания и нагрузкой. Поэтому конденсатора и катушка индуктивности являются реактивными элементами, не потребляющими активную мощность и по этой причине они практически не нагреваются.

Расчет сопротивления делителя напряжения на конденсаторах заключается в определении необходимых значений сопротивлений.

Сопротивление конденсатора XC является величиной не постоянной и зависит от частоты переменного тока f и емкости C:

Как видно из формулы, сопротивление снижается с увеличением частоты и емкости. Для постоянного тока, частота которого равна нулю, сопротивление стремится к бесконечности, поэтому, рассматриваемая далее схема емкостного делителя напряжения не применяется постоянном токе.

Для снижения величины uвых, например в два раза, емкости C1 и C2 должны быть равны. Универсальные формулами для определения выходных uвых1 и uвых2 в зависимости от входного и емкостей C1 и C2 имеют вид, аналогичный для резисторных делителей:

Поскольку частота переменного тока для всех конденсаторов одинакова, то формулу можно упростить:

Индуктивный делитель напряжения

В качестве делителей переменного напряжения также, но гораздо реже, применяют катушки индуктивности, которые относятся к реактивным элементам. Однако, в отличие от конденсаторов, которые являются накопителями электрического поля, катушки индуктивности накапливают магнитное поле.

Индуктивное сопротивление зависит от индуктивности L и частоты переменного тока f. С ростом этих параметров сопротивление катушки переменному току возрастает.

Упрощенный вариант формулы:

Как вы наверняка уже заметили, чтобы рассчитать емкостной делитель напряжения достаточно знать емкости конденсаторов, а индуктивный делитель – индуктивности.

Делитель напряжения: схема и расчёт

Для того, чтобы получить из исходного напряжения лишь его часть используется делитель напряжения (voltage divider). Это схема, строящаяся на основе пары резисторов.

В примере, на вход подаются стандартные 9 В. Но какое напряжение получится на выходе Vout? Или эквивалентный вопрос: какое напряжение покажет вольтметр?

Ток, протекающий через R1 и R2 одинаков пока к выходу Vout ничего не подключено. А суммарное сопротивление пары резисторов при последовательном соединении:

Таким образом, сила тока протекающая через резисторы

Теперь, когда нам известен ток в R2, расчитаем напряжение вокруг него:

Или если отавить формулу в общем виде:

Так с помощью пары резисторов мы изменили значение входного напряжения с 9 до 5 В. Это простой способ получить несколько различных напряжений в одной схеме, оставив при этом только один источник питания.

Применение делителя для считывания показаний датчика

Другое применение делителя напряжения — это снятие показаний с датчиков. Существует множество компонентов, которые меняют своё сопротивление в зависимости от внешних условий. Так термисторы меняют сопротивление от нуля до определённого значения в зависимости от температуры, фоторезисторы меняют сопротивление в зависимости от интенсивности попадающего на них света и т.д.

Если в приведённой выше схеме заменить R1 или R2 на один из таких компонентов, Vout будет меняться в зависимости от внешних условий, влияющих на датчик. Подключив это выходное напряжение к аналоговому входу Ардуино, можно получать информацию о температуре, уровне освещённости и других параметрах среды.

Значение выходного напряжения при определённых параметрах среды можно расчитать, сопоставив документацию на переменный компонент и общую формулу расчёта Vout.

Подключение нагрузки

С делителем напряжения не всё так просто, когда к выходному подключения подключается какой-либо потребитель тока, который ещё называют нагрузкой (load):

В этом случае Vout уже не может быть расчитано лишь на основе значений Vin, R1 и R2: сама нагрузка провоцирует дополнительное падение напряжения (voltage drop). Пусть нагрузкой является нечто, что потребляет ток в 10 мА при предоставленных 5 В. Тогда её сопротивление

В случае с подключеной нагрузкой следует рассматривать нижнюю часть делителя, как два резистора соединённых параллельно:

Подставив значение в общую формулу расчёта Vout, получим:

Как видно, мы потеряли более полутора вольт напряжения из-за подключения нагрузки. И тем ощутимее будут потери, чем больше номинал R2 по отношению к сопротивлению L. Чтобы нивелировать этот эффект мы могли бы использовать в качестве R1 и R2 резисторы, например, в 10 раз меньших номиналов.

Пропорция сохраняется, Vout не меняется:

А потери уменьшатся:

Однако, у снижения сопротивления делящих резисторов есть обратная сторона медали. Большое количество энергии от источника питания будет уходить в землю. В том числе при отсоединённой нагрузке. Это небольшая проблема, если устройство питается от сети, но — нерациональное расточительство в случае питания от батарейки.

Кроме того, нужно помнить, что резисторы расчитаны на определённую предельную мощьность. В нашем случае нагрузка на R1 равна:

А это в 4-8 раз выше максимальной мощности самых распространённых резисторов! Попытка воспользоваться описанной схемой со сниженными номиналами и стандартными 0.25 или 0.5 Вт резисторами ничем хорошим не закончится. Очень вероятно, что результатом будет возгарание.

Применимость

Делитель напряжения подходит для получения необходимого заниженного напряжения в случаях, когда подключенная нагрузка потребляет небольшой ток (доли или единицы миллиампер). Примером подходящего использования является считывание напряжения аналоговым входом микроконтроллера, управление базой/затвором транзистора.

Делитель не подходит для подачи напряжения на мощных потребителей вроде моторов или светодиодных лент.

Чем меньшие номиналы выбраны для делящих резисторов, тем больше энергии расходуется впустую и тем выше нагрузка на сами резисторы. Чем номиналы больше, тем больше и дополнительное (нежелательное) падение напряжения, провоцируемое самой нагрузкой.

Читайте также:  Декоративная капуста: украшение для клумбы и вкусный овощ

Если потребление тока нагрузкой неравномерно во времени, Vout также будет неравномерным.

ликбез от дилетанта estimata

Новичку об основах в области экстремальных и чрезвычайных ситуаций, выживания, туризма. Также будет полезно рыбакам, охотникам и другим любителям природы и активного отдыха.

суббота, 30 декабря 2017 г.

Делитель напряжения

В статье Освещение помещения в условиях ЧС и БП (кратко) упоминался делитель напряжения. Что такое делитель напряжения и как его рассчитать и напишу здесь.

Что такое делитель напряжения

Основной функцией делителя напряжения в электрических цепях является снижение напряжения и получение нескольких его значений с фиксированными показателями на различных участках.

Делители напряжения бывают на резисторах, на конденсаторах, на катушках индуктивности.

Делители напряжения на резисторах

Делители напряжения могут применяться как в цепях постоянного тока, так и в цепях тока переменного. Делители напряжения на резисторах подходят и для тех, и для других цепей, однако используются они только в цепях низкого напряжения. Для питания устройств делители напряжения на резисторах не применяют.

В простейшем виде резистивный делитель напряжения состоит всего из пары резисторов,

соединенных последовательно. Делимое напряжение подается на делитель, в результате на каждом резисторе падает определенная доля этого напряжения, пропорциональная номиналу резистора. Сумма падений напряжений равна здесь напряжению подаваемому на делитель.

Согласно закону Ома для участка электрической цепи, на каждом резисторе падение напряжения будет прямо пропорционально току и величине сопротивления резистора. А согласно первому правилу Кирхгофа, ток через данную цепь будет везде один и тот же. Так, на каждый резистор придутся падения напряжения:

И напряжение на концах участка цепи будет равно:

А ток в цепи делителя составит:

Используя делитель напряжения на резисторах для тех или иных целей, важно понимать, что присоединенная к одному из плеч делителя нагрузка, будь то измерительный прибор или что-нибудь другое, должна иметь собственное сопротивление значительно большее (в 10-100 раз), чем общее сопротивление резисторов, образующих делитель. Так, чтобы в расчетах этим сопротивлением, включенным параллельно R2, можно было бы пренебречь.
Для выбора конкретных значений сопротивлений на практике, как правило, достаточно следовать следующему алгоритму. Сначала необходимо определить величину тока делителя, работающего при отключенной нагрузке (см. выше, в предыдущем абзаце). Исходя из величины тока, по закону Ома определяют значение суммарного сопротивления R = R 1 +R 2 . Остается только взять конкретные значения сопротивлений из стандартного ряда, отношение величин которых близко требуемому отношению напряжений, а сумма величин близка расчетной.

Пример: есть источник постоянного напряжения 5 вольт, необходимо подобрать к нему резисторы для делителя напряжения, чтобы снимать с делителя измерительный сигнал величиной в 2 вольта. Допустимая рассеиваемая на делителе мощность не должна превышать 0,02 Вт.

Решение: Пусть максимальная мощность, рассеиваемая на делителе, равна 0,02 Вт, тогда минимальное общее сопротивление делителя при 5 вольтах найдем из закона Ома, оно получится равно 1250 Ом. Пусть 1,47 кОм — выбранное нами общее сопротивление делителя, тогда 2 вольта упадет на 588 омах. Выберем постоянный резистор на 470 Ом и переменный на 1 кОм. Установим на переменном резисторе значение в 588 Ом.

Делители напряжения на резисторах широко применяются сегодня в электронных схемах. На этих схемах значения величин резисторов для делителей выбираются исходя из параметров активных элементов схем. Как правило, делители стоят в измерительных цепях схем, в цепях обратной связи преобразователей напряжения и т. д. Минус таких решений заключается в том, что резисторы рассеивают на себе мощность в виде тепла, однако целесообразность оправдывает эти малые потери энергии.

Делитель напряжения на конденсаторах

В цепях переменного тока, в высоковольтных схемах, применяют делители напряжения на конденсаторах. Здесь используется реактивный характер сопротивления конденсаторов в цепях переменного тока. Величина реактивного сопротивления конденсатора в цепи переменного тока зависит от электроемкости конденсатора и от частоты напряжения. Вот формула для нахождения этого сопротивления:

Чем больше электроемкость конденсатора – тем его реактивное (емкостное) сопротивление меньше и чем выше частота – тем так же меньше реактивное сопротивление.

Делите напряжения на конденсаторах используются в измерительных схемах цепей переменного тока.
Падения напряжений на плечах считается аналогично случаю с постоянными активными сопротивлениями (резисторами, см. выше в делители напряжения на резисторах).

Достоинство конденсаторов, применяемых в делителях, состоит в том, что рассеивание энергии в форме тепла получается минимальным, и зависит только от качества диэлектрика.

Делитель напряжения на катушках индуктивностях

Замечу, что приведенная формула чисто теоретическая и не учитывает момент включения, насыщение сердечника, межвитковую ёмкость, скин-эффект, механические характеристики.

Делитель напряжения на резисторах: формула расчета

Делитель напряжения на резисторах

Резисторный делитель напряжения — это устройство, с помощью которого из источника с высоким напряжением можно получить лишь необходимую для устройства часть. Это нужно сделать для питания потребителя с низкой мощностью. Ниже вы узнаете о разновидностях такого приспособления, для чего оно используется в физике , а также, как произвести необходимые расчёты самостоятельно и при помощи программ.

Что такое делитель тока

Делитель тока — это устройство, позволяющее разделить поток тока на две части, чтобы в дальнейшем использовать одну из них. Он нужен, когда устройство не работает с большим током и нужно отделить его меньшее количество, необходимое для использования аппаратуры.

Состоит делитель обычно из двух резисторов , параллельно соединённых, так в каждом из них будет уменьшаться ток.
При последовательном соединении будет уменьшаться напряжение.

Виды и принцип действия

В основе принципа действия устройства, уменьшающего нагрузку сети, лежит первый закон Кирхгофа: сумма сходящихся в узле токов равна нулю.

Принцип работы у всех одинаковый: в них есть U исходное: такое же, как в источнике питания и получаемое на выходе из сети, зависящее от соотношения резисторов в плечах делителя.
Схема , позволяющая понять принцип действия:

Различают разные устройства, в зависимости от элементов в составе:

  • резистивный — более популярен из-за простоты устройства.
  • ёмкостный;
  • индуктивный.

Формула для расчёта делителя напряжения

Как рассчитать резистор для понижения напряжения ?

Для расчёта получаемой в итоге нагрузки, нужно знать следующие данные: U исходное и значение сопротивления в каждом из составных элементов.

Делитель рассчитывается с учётом того, что проходящий через него ток минимум в 10 раз больше, чем на выходе и меньше, чем входящий в сеть.

Можно рассчитать общее сопротивление в резисторах:

В параллельно соединённых резисторах U1=U2, из это можно сделать вывод, что в сети протекает общий ток:
I=I1+I2

Найти общий ток можно, зная закон Ома

Уменьшаемое в итоге напряжение на резисторах находится по формуле:
U1=(R1/(R1+R2))*U
U2=(R2/(R1+R2))*U
Остаётся узнать, как найти ток на обоих резисторах:

Также, рассчитать напряжение на резисторе можно через ЭДС (Электродвижущую силу):

r – внутреннее сопротивление устройства.

Расчет делителя напряжения на резисторах, конденсаторах и индуктивностях

Делитель на резисторах — отличается своей универсальностью: используют при постоянном и переменном токе, но только при пониженном сопротивлении цепи.

Согласно закону Ома и правилу Кирхгофа через всю цепь будет проходить один и тот же ток.

Тогда на каждом из резисторов: U1= I х R1 и U2 = I х R2
Ток в цепи устройства:

Уменьшение на конденсаторах применяют для цепей с высоким переменным током. В нём минимальная потеря энергии на выходе. Реактивное сопротивление конденсатора зависит от его электроёмкости и частоты напряжения в цепи.

Формула для вычисления сопротивления:

Делитель на индуктивностях используется при переменном низком токе на высоких частотах. Сопротивление катушки переменного тока прямо пропорционально зависит от индуктивности и частоты. У провода катушки имеется активное сопротивление, из-за чего мощность такого прибора больше, чем у аналогов.

Сопротивление катушки находится по формуле:

Расчет делителя напряжения калькулятором онлайн

Калькулятор онлайн — это программа , с помощью которой вы можете произвести необходимые вычисления для расчёта U выходного. Её используют, когда в расчётах много резисторов или при больших значениях. Для этого вам сначала нужно определить U исходное, сопротивление каждого из резисторов и ёмкость конденсатора.

Практическое применение параллельного и последовательного соединения

Составные элементы прибора соединяют в цепь, чтобы получить из сети нужную для устройства часть энергии.


Пример работы делителя напряжения на фоторезисторе.

Исходное сопротивление меняется от 1кОм в момент полного освещения до 10кОм при отсутствии света, то можно увеличить диапазон сопротивления. При добавлении резисторов с R=5,6кОм, исходящее напряжение меняется следующим образом:

ОсвещённостьR1 (кОм)R2(кОм)R2/(R1+R2)U выходное (В)
Яркая5,610,150,76
Тусклая5,670,562,78
Темнота5,6100,673,21

Таким образом, увеличивается диапазон выходного напряжения, и оно становится подходящим для большинства сетей.

Потенциометры

Потенциометры используют в качестве делителя в системе с постоянным током. Их применяют в основном для изменения отдельных параметров в механизме.

На потенциометр подается напряжение, регулируемое подвижным контактом, который действует, когда крутят ручку, в результате оно может меняться от нуля до исходного значения.
Потенциометры используют в быту, как регулятор громкости, и в электронике, например, в качестве датчика.


Резистивные датчики

Резистивные датчики также называют омическими. Это приборы, в которых изменяется сопротивление, если изменяется длина, площадь сечения или удельное сопротивление. Их используют в устройствах для изменения сопротивления, а также при помощи микроконтроллера с его помощью вы можете измерить напряжение. Существуют различные датчики, одним из некоторых является фоторезистор — переменный резистор, сопротивление которого зависит от попадающего на него света.

Переменный резистор в качестве делителя напряжения

Переменный резистор позволяет напряжению изменятьс я более плавно. Работает он так: крайние выводы подключаются к положительному и отрицательному заряду, а из центрального на выходе получается пониженное напряжение

Делитель применяют в различных конструкциях, если нагрузка сети слишком высока для устройства, в датчиках и электронных схемах. Он является одним из основных аспектов электроники, позволяет приспособить параметры сети для механизма. Теперь вы знаете, для чего применяют резисторный делитель, основные для использования вычисления, например, как рассчитать резистор для понижения напряжени я.

Ссылка на основную публикацию