Как альтернативные источники энергии помогают получать тепло и электричество
- Главная
- Технологии
Ухудшение экологии и истощение природных ресурсов заставляет задумываться о том, как получать электричество и тепло из возобновляемых источников.
В этой статье рассказываем, как работает альтернативная энергия и почему многие страны делают выбор в её пользу.
Что такое альтернативная энергия?
Энергия бывает возобновляемой (альтернативной) и невозобновляемой (традиционной).
Альтернативные источники энергии – это обычные природные явления, неисчерпаемые ресурсы, которые вырабатываются естественным образом. Такая энергия ещё называется регенеративной или «зелёной».
Невозобновляемые источники – это нефть, природный газ и уголь. Им ищут замену, потому что они могут закончиться. Ещё их использование связано с выбросом углекислого газа, парниковым эффектом и глобальным потеплением.
Человечество получает энергию, в основном за счёт сжигания ископаемого топлива и работы атомных электростанций. Альтернативная энергетика – это методы, которые отдают энергию более экологичным способом и приносят меньше вреда. Она нужна не только для промышленных целей, но и в простых домах для отопления, горячей воды, освещения, работы электроники.
Ресурсы возобновляемой энергии
- Солнечный свет
- Водные потоки
- Ветер
- Приливы
- Биотопливо (топливо из растительного или животного сырья)
- Геотермальная теплота (недра Земли)
Альтернативные виды энергии
1. Солнечная энергия
Один из самых мощных видов альтернативных источников энергии. Чаще всего её преобразуют в электричество солнечными батареями. Всей планете на целый год хватит энергии, которую солнце посылает на Землю за день. Впрочем, от общего объёма годовая выработка электроэнергии на солнечных электростанциях не превышает 2%.
Основные недостатки – зависимость от погоды и времени суток. Для северных стран извлекать солнечную энергию невыгодно. Конструкции дорогие, за ними нужно «ухаживать» и вовремя утилизировать сами фотоэлементы, в которых содержатся ядовитые вещества (свинец, галлий, мышьяк). Для высокой выработки необходимы огромные площади.
Солнечное электричество распространено там, где оно дешевле обычного: отдалённые обитаемые острова и фермерские участки, космические и морские станции. В тёплых странах с высокими тарифами на электроэнергию, оно может покрывать нужны обычного дома. Например, в Израиле 80% воды нагревается солнечной энергией.
Батареи также устанавливают на беспилотные автомобили, самолёты, дирижабли, поезда Hyperloop .
2. Ветроэнергетика
Запасов энергии ветра в 100 раз больше запасов энергии всех рек на планете. Ветровые станции помогают преобразовывать ветер в электрическую, тепловую и механическую энергию. Главное оборудование – ветрогенераторы (для образования электричества) и ветровые мельницы (для механической энергии).
Этот вид возобновляемой энергии хорошо развит – особенно в Дании, Португалии, Испании, Ирландии и Германии. К началу 2016 года мощность всех ветрогенераторов обогнала суммарную установленную мощность атомной энергетики.
Недостаток в том, что её нельзя контролировать (сила ветра непостоянна). Ещё ветроустановки могут вызывать радиопомехи и влиять на климат, потому что забирают часть кинетической энергии ветра – правда, учёные пока не знают хорошо это или плохо.
3. Гидроэнергия
Чтобы преобразовать движение воды в электричество нужны гидроэлектростанции (ГЭС) с плотинами и водохранилищами. Их ставят на реках с сильным потоком, которые не пересыхают. Плотины строят для того, чтобы добиться определённого напора воды – он заставляет двигаться лопасти гидротурбины, а она приводит в действие электрогенераторы.
Строить ГЭС дороже и сложнее относительно обычных электростанций, но цена электричества (на российских ГЭС) в два раза ниже. Турбины могут работать в разных режимах мощности и контролировать выработку электричества.
4. Волновая энергетика
Есть много способов генерации электричества из волн, но эффективно работают только три. Они различаются по типу установок на воде. Это камеры, нижняя часть которых погружена в воду, поплавки или установки с искусственным атоллом.
Такие волновые электростанции передают кинетическую энергию морских или океанических волн по кабелю на сушу, где она на специальных станциях преобразуется в электричество.
Этот вид используется мало – 1% от всего производства электроэнергии в мире. Системы тоже дорогие и для них нужен удобный выход к воде, который есть не у каждой страны.
5. Энергия приливов и отливов
Эту энергию берут от естественного подъёма и спада уровня воды. Электростанции ставят только вдоль берега, а перепад воды должен быть не меньше 5 метров. Для генерации электричества строят приливные станции, дамбы и турбины.
Приливы и отливы хорошо изучены, поэтому этот источник более предсказуем относительно других. Но освоение технологий было медленным и их доля в глобальном производстве мала. Кроме того, приливные циклы не всегда соответствуют норме потребления электричества.
6. Энергия температурного градиента (гидротермальная энергия)
Морская вода имеет неодинаковую температуру на поверхности и в глубине океана. Используя эту разницу, получают электроэнергию.
Первая установка, которая даёт электричество за счёт температуры океана была сделана ещё в 1930 году. Сейчас есть океанические электростанции закрытого, открытого и комбинированного типа в США и Японии.
7. Энергия жидкостной диффузии
Это новый вид альтернативного источника энергии. Осмотическая электростанция, установленная в устье реки, контролирует смешение солёной и пресной воды и извлекает энергию из энтропии жидкостей.
Выравнивание концентрации солей даёт избыточное давление, которое запускает вращение гидротурбины. Пока есть только одна такая энергетическая установка в Норвегии.
8. Геотермальная энергия
Геотермальные станции берут внутреннюю энергию Земли – горячую воду и пар. Их ставят в вулканических районах, где вода у поверхности или добраться до неё можно пробурив скважину (от 3 до 10 км.).
Извлекаемая вода отапливает здания напрямую или через теплообменный блок. Ещё её перерабатывают в электричество, когда горячий пар вращает турбину, соединённую с электрогенератором.
Недостатки: цена, угроза температуре Земли, выбросы углекислого газа и сероводорода.
Больше всего геотермальных станций в США, Филиппинах, Индонезии, Мексике и Исландии.
9. Биотопливо
Биоэнергетика получает электричество и тепло из топлива первого, второго и третьего поколений.
- Первое поколение – твёрдое, жидкое и газообразное биотопливо (газ от переработки отходов). Например, дрова, биодизель и метан.
- Второе поколение – топливо, полученное из биомассы (остатков растительного или животного материала, или специально выращенных культур).
- Третье поколение – биотопливо из водорослей.
Биотопливо первого поколения легко получить. Сельские жители ставят биогазовые установки, где биомасса бродит под нужной температурой.
Самый традиционный способ и древнейшее топливо – дрова. Сейчас для их производства сажают энергетические леса из быстрорастущих деревьев, тополя или эвкалипта.
Плюсы и минусы альтернативной энергии
Главная перспектива альтернативных источников – существования человечества даже в условиях жёсткого дефицита нефти, газа и угля.
Преимущества:
- Доступность – не нужно обладать нефтяными или газовыми месторождениями. Правда, это относится не ко всем видам. Страны без выхода к морю не смогут получать волновую энергию, а геотермальную можно преобразовывать только в вулканических районах.
- Экологичность – при образовании тепла и электричества нет вредных выбросов в окружающую среду.
- Экономия – полученная энергия имеет низкую себестоимость.
Недостатки и проблемы:
- Траты на этапе строительства и обслуживание – оборудование и расходные материалы дорогие. Из-за этого повышается итоговая цена электроэнергии, поэтому она не всегда оправдана экономически. Сейчас главная задача разработчиков снизить себестоимость установок.
- Зависимость от внешних факторов: невозможно контролировать силу ветра, уровень приливов, результат переработки солнечной энергии зависит от географии страны.
- Низкий КПД и маленькая мощность установок (кроме ГЭС). Вырабатываемая мощность не всегда соответствует уровню потребления.
- Влияние на климат. Например, спрос на биотопливо привёл к сокращению посевных площадей для продовольственных культур, а плотины для ГЭС изменили характер рыбных хозяйств.
Возобновляемая энергия в мире
Главный потребитель возобновляемых источников энергии – Евросоюз. В некоторых странах альтернативная энергетика вырабатывает почти 40% от всей электроэнергии. Там уже прижились разные меры поддержки: скидочные тарифы на подключение и возврат денег за покупку оборудования. Не отстают страны Востока и США.
Германия
40% электроэнергии в Германии дают возобновляемые источники. Она лидер по числу ветровых установок, которые генерируют 20,4 % электричества. Оставшаяся доля приходится на гидроэнергетику, биоэнергетику и солнечную энергетику. Немецкое правительство поставило план: вырабатывать 80% энергии за счёт альтернативных источников к 2050 году, но закрывать атомные электростанции пока не хочет.
Исландия
У Исландии очень много горячей воды, потому что она расположилась в зоне вулканической активности. Страна обеспечивает 85% домов отоплением из геотермальных источников и покрывает ими 65% потребностей населения в электроэнергии. Мощность источников настолько велика, что они хотят наладить экспорт энергии в Великобританию.
Швеция
После нефтяного кризиса 1973 года страна стала искать другие источники энергии. Началось всё с ГЭС и АЭС. Из-за атомных станций шведов часто критиковали Greenpeace, но с конца 80-х доля энергии от АЭС не растёт.
Начиная с 90-х Швеция строит оффшорные ветропарки в море. На выбросы предприятиями углерода в атмосферу введён дополнительный налог, а для производителей ветровой, солнечной и биоэнергии есть льготы.
Ещё Швеция активно использует энергию от переработки мусора и даже планирует его закупать у соседних стран, чтобы отказаться от нефти. Некоторые города получают тепло от мусоросжигательных заводов.
Китай
В Китае самая мощная ГЭС в мире – «Три ущелья». По состоянию на 2018 год – это крупнейшее по массе сооружение. Её сплошная бетонная плотина весит 65,5 млн тонн. За 2014 станция произвела рекордные для мира 98,8 млрд кВт⋅ч.
Крупнейшие ветровые ресурсы тоже здесь (три четверти из них поставлены в море). К 2020 году страна планирует выработать при их помощи 210 ГВт.
Ещё тут 2 700 геотермальных источников и делают 63% устройств для преобразования солнечной энергии. Китай занимает третье место в производстве биотоплива на основе этанола.
Альтернативная энергия в России
Разное географическое положение регионов и специфика климатических поясов в России не позволяют развивать эту отрасль равномерно. Нет инвестиций и есть пробелы в законе.
Виды возобновляемой энергии в России
Солнечная энергия
Используется и в промышленных масштабах, и у местного населения как резервный или основной источник тепла и электричества. Мощность всех солнечных установок – 400 МВт, из них самые крупные в Самарской, Астраханской, Оренбургской областях и Крыму. Самая мощная СЭС – «Владиславовка» (Крым). Ещё разрабатываются проекты для Сибири и Дальнего Востока.
Ветровая энергетика
Ветровая возобновляемая энергия в России представлена чуть хуже, чем солнечная, хотя и здесь есть промышленные установки. Общая мощность ветровых генераторов в нашей стране – 183,9 МВт (0,08 % от всей энергосистемы). Больше всего установок – в Крыму, а мощнейшая находится в Адыгее – «Адыгейская ВЭС».
Гидроэнергетика
Это самый популярный вариант альтернативного источника энергии в России. Около 200 речных ГЭС вырабатывают до 20% от всей энергии в стране. В заливе Кислая губа в Мурманской области с 1968 года есть приливная электростанция – «Кислогубская ПЭС». Самая крупная ГЭС стоит на реке Енисей – «Саяно-Шушенская».
Геотермальная энергетика
За счёт обилия вулканов этот вид энергетики распространён на Камчатке. Там 40% потребляемой энергии генерируется на геотермальных источниках. По данным учёных, потенциал Камчатки оценивается в 5000 МВт, а вырабатывается только 80 МВт энергии в год. Ещё геотермальные станции есть на Курилах, Ставропольском и Краснодарском крае.
Биотопливо
Наша страна входит в тройку экспортёров пеллет на европейском рынке. В России есть заводы, создающие из остатков древесины пеллеты и брикеты, которыми топят котлы и печки.
Сельскохозяйственные отходы преобразуют в жидкое топливо и биогаз для дизельных двигателей. А вот свалочный газ не используется вообще, его просто выбрасывают в атмосферу, нанося ущерб окружающей среде.
Компании, которые занимаются возобновляемыми источниками энергии
Рост инвестиций в возобновляемую энергетику и поддержка правительства помогает многим компаниям успешно вести бизнес.
First Solar Inc.
Эта американская компания была образована в 1990 году и стала известной благодаря производству солнечных батарей. Сейчас это крупнейшая фирма, которая продаёт солнечные модули, поставляет оборудование и отвечает за технический сервис.
Vestas Wind Systems A/S
Старейший производитель ветрогенераторов из Дании. Компания основана в 1898 году и на сегодняшний день ей удалось установить более 60 тысяч ветровых турбин в 63 странах. Vestas продаёт отдельные генераторы, комплексные станции и обслуживает устройства.
Atlantica Yield PLC
Эта компания с офисом в Лондоне владеет классическими линиями электропередач, солнечными и ветровыми станциями в Северной Америке, Испании, Алжире, Южной Америке и Южной Африке.
ABB Ltd. Asea Brown Boveri
Шведско-швейцарская компания, известная автомобильными двигателями, генераторами и робототехникой. С 1999 года бренд занимается преобразованием солнечной и ветровой энергии. В 2013 году компания стала мировым лидером в области оборудования фотоэлектрической энергии.
Альтернативные источники энергии
Пост опубликован: 30 ноября, 2017
Когда запасы традиционных источников энергии, таких как нефть, газ и уголь, неумолимо уменьшаются и их стоимость достаточно высока, а использование приводит к образованию парникового эффекта на планете, все большее количество стран в своей энергетической политике, обращают свои взоры в сторону альтернативных источников энергии.
Что это такое
Альтернативные источники энергии – это экологически чистые, возобновляемые ресурсы, при преобразовании которых, человек получает электрическую и тепловую энергию, используемую для своих нужд.
К таким источникам относятся энергия ветра и солнца, воды рек и морей, тепло поверхности земли, а также биотопливо, получаемое из биологической массы животного и растительного происхождения.
Виды альтернативной энергетики
В зависимости от источника энергии, который в результате преобразования позволяет получать человеку электрическую и тепловую энергии, используемые в повседневной жизни, альтернативная энергетика классифицируется на несколько видов, определяющих способы ее генерации и типы установок служащих для этого.
Энергия солнца
Солнечная энергетика основана на преобразовании энергии солнца, в результате которого получается электрическая и тепловая энергии.
Получение электрической энергии основано на физических процессах, происходящих в полупроводниках под воздействием солнечных лучей, получение тепловой – на свойствах жидкостей и газов.
Для генерации электрической энергии комплектуются солнечные электростанции, основой которой служат солнечные батареи (панели), изготавливаемые на основе кристаллов кремния.
Основой тепловых установок — служат солнечные коллекторы, в которых энергия солнца преобразуется в тепловую энергию теплоносителя.
Мощность подобных установок зависит от количества и мощности отдельных устройств, входящих в состав тепловых и солнечных станций.
Энергия ветра
Ветровая энергетика основана на преобразовании кинетической энергии воздушных масс в электрическую энергию, используемую потребителями.
Основой ветровых установок служит ветровой генератор.Ветровые генераторы различаются по техническим параметрам, габаритным размерам и конструкции: с горизонтальной и вертикальной осью вращения, различным типом и количеством лопастей, а также по месту их расположения (наземное, морское и т.д.).
Сила воды
Гидроэнергетика основана на преобразовании кинетической энергии водных масс в электрическую энергию, которая также используемую человеком в своих целях.
К объектам данного вида относятся гидроэлектростанции различной мощности, устанавливаемых на реках и иных водных объектах. В таких установках, под воздействием естественного течения воды, или путем создания плотины, вода воздействует на лопасти турбины вырабатывающей электрический ток. Гидротурбина, является основой гидроэлектростанций.
Еще один способ получения электрической энергии путем преобразования энергии воды – это использование энергии приливов, посредством строительства приливных станций. Работа таких установок основана на использовании кинетической энергии морской воды в период приливов и отливов, происходящих в морях и океанах под воздействием объектов солнечной системы.
Тепло земли
Геотермальная энергетика, основана на преобразовании тепла, излучаемого поверхностью земли, как в местах выброса геотермальных вод (сейсмически опасные территории), так и в иных регионах нашей планеты.
Для использования геотермальных вод используются специальные установки, посредством которых внутреннее тепло земли преобразуется в тепловую и электрическую энергии.
Использования теплового насоса позволяет получать тепло из поверхности земли, вне зависимости от места его расположения. Его работа основана на свойствах жидкостей и газов, а также законах термодинамики.
Тепловые насосы различаются по мощности и своей конструкции, зависящей от первичного источника энергии, определяющей их тип, это системы: «грунт-вода» и «вода-вода», «воздух-вода» и «грунт-воздух», «вода-воздух» и «воздух-воздух», «фреон-вода» и «фреон-воздух».
Биотопливо
Виды биотоплива различаются по способам его получения, его агрегатному состоянию (жидкое, твердое, газообразное) и видам использования. Объединяющим все виды биотоплива показателем, служит то, что основой для их производства служат органические продукты, посредством переработки которых получается электрическая и тепловая энергии.
Твердые виды биотоплива — это дрова, топливные брикеты или пеллеты, газообразные – это биогаз и биоводород, а жидкие – биоэтанол, биометанол, биобутанол, диметиловый эфир и биодизель.
Плюсы и минусы использования
Как у каждого конкретного источника энергии, вне зависимости от того, к какому типу он относится, традиционному или альтернативному, свойственны относящееся именно к нему достоинства и недостатки использования.
Кроме этого, в каждой группе энергоресурсов свойственны общие плюсы и минусы. Для альтернативных источников, к таковым относятся:
- Плюсами использования являются:
- Возобновляемость альтернативных источников энергии;
- Экологическая безопасность;
- Доступность и возможность использования в широком спектре применения;
- Низкая себестоимость энергии, получаемой в результате преобразования.
- Минусы использования:
- Высокая стоимость оборудования и значительные материальные затраты на этапах строительства и монтажа;
- Низкий КПД установок;
- Зависимость от внешних факторов, как-то: погодные условия, сила ветра и т.д.;
- Относительно не большая установленная мощность генерирующих установок, за исключением гидроэлектростанций.
Альтернативные источники энергии в России
В нашей стране, как и во многих технически развитых странах мира, использованию альтернативных источников энергии уделяется особое внимание. Это обусловлено большими территориями, на которых и в настоящее время нет централизованных источников энергии, а также общемировой тенденцией, связанной с борьбой за экологию планеты и экономией традиционных видов топлива.
В разных регионах страны получили развитие разные виды альтернативной энергетики. Это связано с географическим положением и возможностью использования того или иного первичного источника получения энергии.
Солнечная энергетика
Солнечные электростанции в настоящее время, получают все большее распространение среди различных слоев населения, как альтернативный или резервный источник электрической и тепловой энергии.
В промышленных масштабах, данный вид энергетики, также присутствует в нашей стране.
Общая установленная мощность солнечных электростанций превышает 400,0 МВт, из них наиболее крупными являются:
- Орская им. А. А. Влазнева, установленной мощностью 40,0 МВт в Оренбургской области;
- Бурибаевская, мощностью 20,0 МВт и Бугульчанская, мощностью 15,0 МВт, в Республике Башкортостан;
- На полуострове Крым функционирует более десяти солнечных электростанций мощностью 20,0 МВт каждая.
На стадии разработки проектной документации и различных этапах строительства, находятся более 50 объектов солнечной генерации, расположенных в различных регионах, от Дальнего Востока и Сибири, до центральных и южных областей нашей страны.
Общая мощность проектируемых и строящихся объектов составляет более 850,0 МВт.
Ветровая энергетика
Ветровые энергетические установки, работающие для получения электрической энергии в промышленных масштабах, также существуют на территории нашей страны, хотя их доля, в общей мощности энергетической системы, значительно ниже, чем солнечных электростанций.
Общая установленная мощность ветровых генераторов составляет немногим больше 100,0 МВт, из них наиболее мощные, это:
- Зеленоградская ветровая установка, мощностью 5,1 МВт, расположенная в Калининградской области;
- Останинская (25,0 МВт), Тарханкутская (22,0 МВт) и Сакская (20,0 МВт) – на полуострове Крым.
На стадии проектирования и строительства, находятся 22 ветровые энергетические установки, общей мощностью более 2500,0 МВт.
Гидроэнергетика
Этот вид альтернативной энергетики наиболее распространен на территории России. В настоящее время доля вырабатываемой электрической энергии ГЭС установленными на реках, в разных регионах страны, превышает 20,0 % от общей генерации всей энергосистемы РФ.
Суммарная установленная мощность гидроэлектростанций, на начало 2017 года, составляет 48085,94 МВт, а их количество – 191объект генерации, различной мощности и конструкции.
Энергию приливов также используют в нашей стране, для производства электрической энергии. В Мурманской области со второй половины ХХ века работает Кислогубская приливная электростанция, которая в 2007 году была реконструирована и в настоящее время, ее установленная мощность составляет 1,7 МВт.
В настоящее время ведется разработка экономического обоснования и проектной документации по строительству подобных станций в Охотском (Пенжинская и Тугурская ПЭС) и Белом (Мезенская) морях.
Геотермальная энергетика
Энергия недр нашей планеты, ее тепло, широко используется в ряде стран, где присутствует вулканическая деятельность. В нашей стране, этот вид энергетики, в силу ее особенностей, распространен на Дальнем Востоке.
В настоящее время успешно работает 5 геотермальных электрических станций установленной мощностью 80,1 МВт, три из которых расположены на Камчатке (Мутновская, Паужетская и Верхне-Мунтовская) и по одной на островах Кунашир (Менделеевская) и Итуруп (Океанская).
Использование биотоплива
Данный вид энергоресурсов не так широко распространен, как традиционные виды топлива или гидроэнергетика. Тем не менее, в связи с тем, что в нашей стране развита лесная и деревообрабатывающая промышленности и большие территории заняты выращиванием сельскохозяйственных культур, то и на этот вид энергетики обращается все большее внимание.
Последние годы построено большое количество заводов по переработке отходов древесины, из которых изготавливаются топливные брикеты и гранулы (пеллеты). Брикеты и пеллеты, в свою очередь, используются в качестве топлива для различного типа котлов в результате сжигания которых, вырабатывается тепловая и электрическая энергии.
Из отходов сельскохозяйственных культур производится биогаз и жидкое топливо для дизельных двигателей и установок, где они сжигается, в результате чего осуществляется производство тепловой и электрической энергий.
Данный вид топлива не получил широкого распространения в нашей стране, но тем не менее перспективы его развития, достаточно обширны и успешны.
Использование для частного дома
Использование альтернативных источников для отопления загородного дома или дачи, а также для его электроснабжения, может быть осуществлено достаточно успешно. В этом случае все зависит от региона проживания пользователя и места расположения объекта потребления энергии.
Способность вырабатывать электрический ток солнечными станциями и ветровыми установками зависит от активности солнца и скорости ветра в месте их размещения, а также прочих погодных явлений, характеризующих этот регион.
Устройство микро ГЭС возможно только при наличии вблизи объекта потребления реки или иного водоема, а геотермальной станции – при присутствии близко расположенных к поверхности земли геотермальных вод.
Биотопливо в виде дров и продуктов отходов деревопереработки, возможно в регионах страны богатых лесами, с развитой промышленностью данного направления.
Получение биогаза и жидкого топлива — доступно там, где большие территории отведены под выращивание сельскохозяйственных культур, что позволяет иметь большой запас биомассы, используемой для производства этих видов топлива.
Можно ли сделать своими руками в домашних условиях
При наличии свободного времени, желания, а также умения работать ручным инструментом, можно создать установки, с помощью которых использовать альтернативные источники для своих нужд, как в виде электрической, так и тепловой энергии.
Это касается всех выше перечисленных видов альтернативной энергетики, так для:
- Солнечных электростанций – можно самостоятельно изготовить солнечные батареи, используя фотоэлементы заводского производства, а также собрать контроллер заряда и инвертор, являющиеся элементами таких установок.
- Ветровых установок – также, как и для солнечных станций, электронные устройства (контроллер, инвертор) собираются достаточно просто с использованием существующих электрических схем и из элементов заводского производства. Самый важный элемент, ветрогенератор – можно изготовить из имеющихся запасных частей и материалов.
- Микро ГЭС – изготовить и смонтировать может каждый, если есть река или водоем, где можно соорудить плотину. Конструкция и вид гидротурбины, зависят от типа водоема и рельефа местности.
- Биогазовую установку – создать не составит труда любому сельскому жителю, условиями для этого будут – наличие необходимого количества биомассы и температура окружающего воздуха, позволяющая происходить процессу ее брожения.
Альтернативная энергетика для дома своими руками: обзор лучших эко-технологий
Запасы природного топлива не безграничны, а цены на энергоносители постоянно растут. Согласитесь, было бы неплохо взамен традиционных источников энергии использовать альтернативные, чтобы не зависеть от поставщиков газа и электроэнергии в своем регионе. Но вы не знаете, с чего начинать?
Мы поможем вам разобраться с основными источниками возобновляемой энергии – в этом материале мы рассмотрели лучшие эко-технологии. Заменить привычные источники питания способна альтернативная энергия: своими руками можно устроить весьма эффективную установку для ее получения.
В нашей статье рассмотрены простые способы сборки теплового насоса, ветрогенератора и солнечных батарей, подобраны фотоиллюстрации отдельных этапов процесса. Для наглядности материал снабжен видеороликами по изготовлению экологически чистых установок.
Популярные источники возобновляемой энергии
“Зеленые технологии” позволят ощутимо сократить бытовые расходы за счет использования практически бесплатных источников.
Еще с древних времен люди использовали в повседневном обиходе механизмы и устройства, действие которых было направлено на превращение в механическую энергию сил природы. Ярким примером тому являются водяные мельницы и ветряки.
С появлением электричества наличие генератора позволило механическую энергию превращать в электрическую.
Сегодня значительное количество энергии вырабатывается именно ветряными комплексами и гидроэлектростанциями. Помимо ветра и воды людям доступны такие источники, как биотопливо, энергия земных недр, солнечный свет, энергия гейзеров и вулканов, сила приливов и отливов.
В быту для получения возобновляемой энергии широко используют следующие устройства:
Высокая стоимость, как самих устройств, так и проведения монтажных работ, останавливает многих людей на пути к получению вроде бы бесплатной энергии.
Окупаемость может достигать 15-20 лет, но это не повод лишать себя экономических перспектив. Все эти устройства можно изготовить и установить самостоятельно.
Солнечные панели собственноручного изготовления
Готовая солнечная панель стоит немалых денег, поэтому ее покупка и установка по карману далеко не каждому. При самостоятельном изготовлении панели расходы можно снизить в 3-4 раза.
Прежде чем приступить к устройству солнечной панели нужно разобраться, как все это работает.
Принцип работы системы солнечного электроснабжения
Понимание назначения каждого из элементов системы позволит представить ее работу в целом.
Основные составляющие любой системы солнечного электроснабжения:
- Солнечная панель. Это комплекс соединенных в единое целое элементов, преобразующих солнечный свет в поток электронов.
- Аккумуляторы. Одной аккумуляторнойбатареинадолго не хватит, поэтому система может насчитывать до десятка таких устройств. Количество аккумуляторных батарей определяется мощностью потребляемой электроэнергии. Количество аккумуляторных батарей можно будет увеличить в будущем, добавив в систему необходимое количество солнечных панелей;
- Контроллер солнечного заряда. Это устройство необходимо для обеспечения нормальной зарядки аккумуляторной батареи. Основное его назначение состоит в недопущении повторной перезарядки батареи.
- Инвертор. Прибор, требующийся для преобразования тока. Аккумуляторные батареи выдают ток низкого напряжения, а инвертор преобразует его в ток необходимого для функционала высокого напряжения – выходная мощность. Для дома достаточно будет инвертора с выдаваемой мощностью 3-5 кВт.
Основная особенность солнечных батарей состоит в том, что они не могут вырабатывать ток высокого напряжения. Отдельный элемент системы способен вырабатывать ток напряжением 0,5-0,55 В. Одна солнечная батарея способна вырабатывать ток напряжением 18-21 В, чего достаточно для зарядки 12-вольтового аккумулятора.
Если инвертор, аккумуляторные батареи и контроллер заряда лучше приобрести готовыми, то солнечные батареи вполне возможно сделать самому.
Изготовление солнечной батареи
Для изготовления батареи необходимо приобрести солнечные фотоэлементы на моно- либо поликристаллах. При этом нужно учесть, что срок службы поликристаллов значительно меньше, чем у монокристаллов.
Кроме того КПД поликристаллов не превышает 12%, тогда как этот показатель у монокристаллов достигает 25%. Для того, чтобы сделать одну солнечную панель необходимо купить как минимум 36 таких элементов.
Шаг #1 – сборка корпуса солнечной панели
Начинаются работы с изготовления корпуса, для этого потребуются следующие материалы:
- Деревянные бруски
- Фанера
- Оргстекло
- ДВП
Из фанеры необходимо вырезать днище корпуса и вставить его в рамку из брусков толщиной 25 мм. Размер днища определяется количеством солнечных фотоэлементов и их размером.
По всему периметру рамки в брусках с шагом 0,15-0,2 м необходимо высверлить отверстия диаметром 8-10 мм. Они требуются для предотвращения перегрева элементов батареи во время работы.
Шаг #2 – соединение элементов солнечной панели
По размеру корпуса необходимо при помощи канцелярского ножа вырезать из ДВП подложку для солнечных элементов. При ее устройстве также нужно предусмотреть наличие вентиляционных отверстий, устраиваемых через каждые 5 см квадратно-гнездовым способом. Готовый корпус нужно дважды покрасить и высушить.
Солнечные элементы следует вверх ногами выложить на подложку из ДВП и выполнить распайку. Если готовые изделия уже не были оснащены припаянными проводниками, то работа существенно упрощается. Однако процесс распайки предстоит выполнить в любом случае.
Нужно помнить, что соединение элементов должно быть последовательным. Изначально элементы следует соединять рядами, а уже потом готовые ряды объединять в комплекс путем присоединения к токоведущим шинам.
По завершению элементы нужно перевернуть, уложить как положено и зафиксировать на своих местах при помощи силикона.
После чего надо проверить величину выходного напряжения. Ориентировочно оно должно находиться в пределах 18-20 В. Теперь батарею следует обкатать в течение нескольких дней, проверить способность зарядки аккумуляторных батарей. Только после контроля работоспособности производится герметизация стыков.
Шаг #3 – сборка системы электроснабжения
Убедившись в безукоризненном функционале, можно выполнить сборку системы электроснабжения. Входные и выходные контактные провода нужно вывести наружу для последующего подключения прибора.
Из оргстекла следует вырезать крышку и закрепить ее саморезами к бортикам корпуса через предварительно просверленные отверстия.
Вместо солнечных элементов для изготовления батареи можно использовать диодную цепь с диодами Д223Б. Панель из 36 последовательно соединенных диодов способна выдавать напряжение 12 В.
Диоды нужно предварительно замочить в ацетоне для удаления краски. В пластиковой панели следует высверлить отверстия, вставить диоды и произвести их распайку. Готовую панель необходимо поместить в прозрачный кожух и герметизировать.
Основные правила установки солнечной панели
От правильности установки солнечной батареи во многом зависит эффективность работы всей системы.
При установке нужно учесть следующие важные параметры:
- Затенение. Если батарея будет находиться в тени деревьев или более высоких сооружений, то она не только не будет нормально функционировать, но и может выйти из строя.
- Ориентация. Для максимального попадания солнечных лучей на фотоэлементы батарею необходимо направить в сторону солнца. Если Вы живете в северном полушарии, то панель должна быть ориентирована на юг, если же в южном, то наоборот.
- Наклон. Этот параметр определяется географическим положением. Специалисты рекомендуют устанавливать панель под углом, равным географической широте.
- Доступность. Нужно постоянно следить за чистотой лицевой стороны и вовремя удалять слой пыли и грязи. А в зимнее время панель периодически необходимо очищать от налипающего снега.
Желательно, чтобы при эксплуатации солнечной панели угол наклона не был постоянным. Прибор будет работать по максимуму только в случае прямо направленных на его крышку солнечных лучей.
Летом его лучше располагать под уклоном в 30º к горизонту. В зимнее время рекомендовано приподнимать и устанавливать на 70º.
Тепловые насосы для отопления
Тепловые насосы являются одним и из наиболее прогрессивных технологических решений в получении альтернативной энергии для вашего дома. Они не только наиболее удобны, но и экологически безопасны.
Их эксплуатация позволит существенно снизить расходы, связанные с оплатой на охлаждение и обогрев помещения.
Классификация тепловых насосов
Тепловые насосы классифицирую по количеству контуров, источнику энергии и способу ее получения.
В зависимости от конечных потребностей тепловые насосы могут быть:
- Одно-, двух или трехконтурные;
- Одно- или двухконденсаторные;
- С возможностью нагрева или с возможностью нагрева и охлаждения.
По виду источника энергии и способу ее получения различают следующие тепловые насосы:
- Грунт – вода. Применяются в умеренном климатическом поясе с равномерным прогревом земли вне зависимости от времени года. Для монтажа используют коллектор либо зонд в зависимости от типа грунта. Для бурения неглубоких скважин не требуется получения разрешительных документов.
- Воздух – вода. Тепло аккумулируется из воздуха и направляется на нагрев воды. Установка будет уместной в климатических зонах с зимней температурой не ниже -15 градусов.
- Вода – вода. Монтаж обусловлен наличием водоемов (озера, реки, грунтовые воды, скважины, отстойники). Эффективность такого теплового насоса является весьма внушительной, что обусловлено высокой температурой источника в холодное время года.
- Вода – воздух. В данной связке в роли источника тепла выступают те же водоемы, но при этом тепло посредством компрессора передается непосредственно воздуху, используемому для обогрева помещений. В данном случае вода не выступает в качестве теплоносителя.
- Грунт – воздух. В данной системе проводником тепла является грунт. Тепло из грунта через компрессор передается воздуху. В роли переносчика энергии применяют незамерзающие жидкости. Данная система считается наиболее универсальной.
- Воздух – воздух. Работа данной системы сходна с работой кондиционера, способного обогревать и охлаждать помещение. Данная система является наиболее дешевой, так как не требует производства земляных работ и прокладки трубопроводов.
При выборе вида источника тепла нужно ориентироваться на геологию участка и возможность беспрепятственного проведения земляных работ, а также на наличие свободной площади.
При дефиците свободного места придется отказаться от таких источников тепла, как земля и вода и забирать тепло из воздуха.
Принцип работы теплового насоса
Принцип работы тепловых насосов основан на использовании цикла Карно, который в результате резкого сжатия теплоносителя обеспечивает повышение температуры.
По такому же принципу, но с противоположным эффектом, работает большинство климатических устройств с компрессорными установками (холодильник, морозильная камера, кондиционер).
Главный рабочий цикл, который реализуется в камерах данных агрегатов, полагает обратный эффект – в результате резкого расширения происходит сужение хладагента.
Именно поэтому один из наиболее доступных методов изготовления теплового насоса основан на использовании отдельных функциональных узлов, используемых в климатическом оборудовании.
Так, для изготовления теплового насоса может быть использован бытовой холодильник. Его испаритель и конденсатор будут играть роль теплообменников, отбирающих тепловую энергию из среды и направляющие ее непосредствен на нагрев теплоносителя, который циркулирует в системе отопления.
Сборка теплового насоса из подручных материалов
Используя старую бытовую технику, а точнее, ее отдельные узлы, можно самостоятельно собрать тепловой насос. Как это можн сделать, рассмотрим далее.
Шаг #1 – подготовка компрессора и конденсатора
Работы начинаются с подготовки компрессорной части насоса, функции которой будут отведены соответствующему узлу кондиционера либо холодильника. Данный узел необходимо закрепить с помощью мягкой подвески на одной из стен рабочего помещения там, где это будет удобно.
После этого необходимо изготовить конденсатор. Для этого идеально подойдет бак из нержавеющей стали объемом 100 л. В него необходимо вмонтировать змеевик (можно взять готовую медную трубку от старого кондиционера либо холодильника.
Подготовленный бак нужно с помощью болгарки разрезать вдоль на две равные части – это необходимо для установки и закрепления змеевика в теле будущего конденсатора.
После монтажа змеевика в одной из половинок обе части емкости нужно соединить и сварить между собой таким образом, чтобы получился замкнутый бак.
Учтите, что при сварке нужно использовать специальный электроды, а еще лучше применять аргоновую сварку, только она может обеспечить максимальное качество шва.
Шаг #2 – изготовление испарителя
Для изготовления испарителя потребуется герметичный пластиковый бак объемом 75-80 литров, в который нужно будет поместить змеевик из трубы диаметром ¾ дюйма.
На концах трубки необходимо нарезать резьбу для последующего обеспечения соединения с трубопроводом. После завершения сборки и проверки герметизации испаритель следует закрепить на стене рабочего помещения при помощи кронштейнов соответствующего размера.
Завершение сборки лучше доверить специалисту. Если часть сборки можно выполнить самостоятельно, то с пайкой медных труб и закачкой хладагента должен работать профессионал. Сборка основной части насоса заканчивается подключением обогревательных батарей и теплообменника.
Нужно отметить, что данная система является маломощной. Поэтому будет лучше, если тепловой насос станет дополнительной частью существующей системы отопления.
Шаг #3 – обустройство и подключение внешнего устройства
В качестве источника тепла лучше всего подойдет вода из колодца или скважины. Она никогда не замерзает и даже зимой ее температура редко опускается ниже +12 градусов. Потребуется устройство двух таких скважин.
Из одной скважины будет происходить забор воды с последующей подачей в испаритель.
Далее отработанная вода будет сбрасываться во вторую скважину. Остается все это подключить к входу в испаритель, к выходу и герметизировать.
В принципе, система готова к эксплуатации, но для ее полной автономности потребуется система автоматики, контролирующая температуру движущегося теплоносителя в отопительных контурах и давление фреона.
На первых порах можно обойтись обыкновенным пускателем, но следует учесть, что запуск системы после отключения компрессора можно выполнять через 8-10 минут – это время необходимо для выравнивания давления фреона в системе.
Устройство и использование ветрогенераторов
Энергию ветра использовали еще наши предки. С тех далеких времен, в принципе, ничего не изменилось.
Отличие состоит лишь в том, что жернова мельницы заменены генератором и приводом, обеспечивающими преобразование механической энергии лопастей в электрическую энергию.
Альтернативная энергия для дома: выбираем источник
Многие полагают, что дешевое отопление частного дома возможно только на магистральном газе. Подумаем, что делать, если его нет, и подведение не планируется, и какой может быть альтренативная энергия для дома.
- Как работает ветрогенератор.
- Как установить солнечный коллектор.
- Как обустроить тепловой насос.
- Как выбрать инвертор.
Сегодня, когда цены на энергоносители стремительно растут вверх, а стоимость подключения к трубе с «голубым топливом» неоправданно высока, всё большее число домовладельцев отказывается от традиционных энергоресурсов и обращает свой взор на альтернативные источники энергии для дома.
Опираясь на знания экспертов и опыт участников forumhouse.ru мы расскажем вам, чем можно заменить газ; как ветер, солнце и тепло земли становятся альтернативой электричеству из проводов – используя их, можно осветить и обогреть загородный дом.
Альтернативный источник электроэнергии: ловец ветра
Именно так можно назвать ветрогенератор. Люди с давних пор используют силу ветра в качестве источника альтернативной энергии.
Пройдя долгий путь, знакомые всем ветряные мельницы превратились в современные ветроэнергетические установки способные вырабатывать электроэнергию.
По какому принципу работает ветрогенератор
Всё довольно просто. Поток ветра вращает лопасти ветроколеса, заставляя таким образом вращаться вал электрогенератора.
Генератор в свою очередь вырабатывает электрический ток.
Следует помнить, что генератор выдает непостоянное напряжение с различной частотой. На случай отсутствия ветра в комплект ветроэнергетической системы входит блок аккумуляторных батарей, куда и поступает выработанная генератором электроэнергия.
Среди индивидуальных домовладельцев наиболее широкое распространение получили ветроэнергетические установки мощностью до 10 кВт. Имеются три основных типа конструкции ветродвигателей:
- Малолопастные. Чаще всего имеют три лопасти. Отличаются высоким КПД и простотой конструкции. Недостатки: из-за малой площади лопастей, начальный запуск двигателя требует скорости ветра не менее 5-5 м/с. Также пользователи отмечают высокий уровень шума.
- Многолопастные. На ветровое колесо монтируется от 18 до 24 выгнутые лопасти. Начинают работать при скорости ветра в 2-4 м/с. Отличаются низким уровнем шума, но и более низким КПД, чем малолопастные ветродвигатели. Недостатки: усложненность конструкции, которая мешает установить ветрогенератор своими руками, и возникающий при их работе гироскопический эффект.
- Роторные ветродвигатели – имеют вертикально расположенные лопасти, которые двигаются не по прямой, а по кругу. Достоинства: стабильная работа при постоянном ветре, низкий уровень шума. Существенный недостаток подобной конструкции ветродвигателя низкий КПД, не более 18 %.
Посмотрим, как же сделать ветроэнергетическую установку эффективной в наших условиях.
Интересен личный опыт участника forumhouse.ru Александра Капустина (ник на форуме Бывалый 1406)
– Размещать ветрогенератор следует на площадке, где для ветров существует как можно меньше помех. Энергия ветра – это кубическая функция скорости ветра. Это означает, что незначительные изменения скорости ветра вызывают существенные изменения выходной мощности. В целях безопасности ставить ветряк желательно дальше от жилых построек. О высоте мачты – ставим как можно выше.
В условиях поселков под Москвой можно рекомендовать высоту мачты не менее 15 метров. А при самостоятельном расчёте системы альтернативного энергоснабжения частного дома сначала необходимо выяснить, какое количество энергии требуется от системы. Для этого придётся определить пиковую мгновенную мощность, а также рассчитать две величины ожидаемого суточного энергопотребления — его максимальное и среднее значения.
Следует помнить, что в наших климатических условиях ветряки могут работать на полную мощность примерно 20–30% дней в году, поэтому ветрогенератор следует рассматривать как дополнительную, резервную систему электроснабжения по выработке электроэнергии для питания бытовых электроприборов.
Ловцы солнца
Как можно использовать энергию солнца: первое, что приходит в голову – солнечная батарея.
Уже никого не удивить фотоэлементами, размещенными на крыше коттеджа.
Но речь в нашем материале пойдёт не о них, а об устройстве способном преобразовывать солнечную энергию в тепло пригодное ля отопления или горячего водоснабжения дома.
Солнечные коллекторы
За ответом на вопрос, что такое солнечный коллектор, обратимся за разъяснениями к заместителю технического директора компании «АкваБур» Евгению Касаткину.
– В основу гелиосистемы или, проще говоря, солнечного коллектора заложен принцип получения тепла от солнечного излучения и дальнейшей передачей накопленной энергии в систему ГВС или отопления.
Существуют два вида солнечных коллекторов:
- Вакуумный солнечный коллектор. Съем потенциала в данной системе производиться с помощью вакуумных трубок. Вакуумная трубка – это колба с двойным стеклом с выкаченным из неё воздухом. С внутренней стороны колба покрыта отражающим материалом, который впускает солнечное излучение, но не выпускает наружу. А во внутренней части системы, находятся трубки со стержнем, в котором находиться теплоноситель. Вакуумная прослойка даёт возможность сохранить около 95% улавливаемой тепловой энергии.
- Плоский солнечный коллектор. Съем потенциала в данной системе основан на поглощении солнечного излучения абсорбирующей пластиной, после чего энергия, в виде накопленного тепла передаётся жидкому носителю. Обратная сторона солнечного коллектора покрывается теплоизоляцией.
Какую систему выбрать с учётом работы в наших условиях
По мнению руководителя направления отдела развития компании «Виссманн» Михаила Мурашко:
– При пасмурной погоде, смоге и рассеянном излучении наиболее эффективно работают трубчатые вакуумные коллекторы. А плоские солнечные коллекторы, более оптимальны для использования в районах с высокой солнечной инсоляцией.
Евгений Касаткин:
– В зимний период и в северных районах солнечный коллектор может использоваться как дополнительная система, подключённая к системе отопления или ГВС. Но наилучшие показатели мы получим летом, когда система при правильной её установке и монтаже, может полностью удовлетворить вашу потребность в горячей воде, без использования косвенных систем нагрева воды.
Установка солнечного коллектора позволит вам получить практически бесплатное тепло. Если системе необходима принудительная циркуляция теплоносителя, то электричество потребуется лишь для работы насоса. А в солнечный день, гелиосистема может нагреть воду до температуры 50-70 С.
Тепловые насосы
Как гласит закон сохранения энергии: «Энергия не может возникнуть из ничего и не может просто так исчезнуть, она может только переходить из одной формы в другую».
В земле, воздухе и воде содержится большое количество низкопотенциальной тепловой энергии которую можно использовать для отопления дома. Остаётся только собрать эту рассеянную тепловую энергию и «запустить» её в систему теплоснабжения дома. Для этого применяется специальное устройство – тепловой насос.
В чем заключается эта технология, объясняет директор компании «SagaTherm» Александр Сагалович:
– Тепловой насос – это холодильная машина.В обычных условиях тепловая энергия передается от более нагретого тела к менее нагретому. Тепловой насос может забирать тепловую энергию у менее нагретого тела и передавать его более нагретому, нагревая его еще сильнее.
Тепловой насос способен отбирать тепловую энергию из следующих источников – воздуха, воды и земли. В наших условиях наиболее целесообразно построить систему тепловых насосов, базирующуюся на отборе тепла земли и воды.
Для перекачивания 4 кВт тепловой энергии нам понадобится примерно 1 кВт электроэнергии. Но электроэнергия тоже никуда просто так не пропадет, она превратится в тепловую энергию, т.к. компрессор в процессе работы также нагревается. Итого – затратив 1 кВт электроэнергии, мы получаем 5 кВт тепла.
Какую выгоду даёт установка этого устройства
Евгений Касаткин:
– Выгоду от использования тепловых насосов лучше всего демонстрирует следующая таблица.
Теперь мы знаем, как работает тепловой насос. Рассмотрим, какие бывают типы систем.
Выбор конструкции будет зависеть от наличия на вашем участке дополнительных свободных площадей или водоёма.
- Вертикальная система. Применяется, если на участке нет места для закладки контура труб или отсутствуют незамерзающие зимой водоёмы. Для монтажа теплового насоса бурятся от 3 до 5 скважин, глубиной от 50 до 150 метров.
- Горизонтальная система. Менее затратна, чем вертикальная система, т.к. отпадает необходимость в бурении дорогих скважин. Контур труб закладывается на небольшой глубине, обычно около 1.5 метров, но требуется довольно приличная площадь участка.
- Водная система. Если возле участка, не далее чем 100 метров, есть незамерзающий в зимнее время водоём, то закладка контура труб в нём будет наиболее разумным выбором.
Особенности эксплуатации тепловых насосов
Как и любая инженерная система, отопление и горячее водоснабжение на базе теплового насоса требует очень вдумчивого подхода.
Александр Сагалович:
– Вертикальная и горизонтальная системы обустройства грунтового теплообменника одинаково эффективны. Горизонтальный теплообменник занимает много места, но значительно дешевле вертикального.
Бурение скважин обойдётся дороже, но зато можно сэкономить место на участке.
Для многих это единственное решение, т.к. участок не позволяет разместить горизонтальный теплообменник.
При обустройстве горизонтального грунтового теплообменника понадобится примерно 5 соток земли на каждые 10 кВт мощности. После завершения работ, эту землю можно использовать без ограничений, единственное, на ней нельзя будет строить капитальные строения. Одним из способов использования тепловых насосов в качестве отопительного контура, может стать монтаж системы водяного тёплого пола.
Инвертор – как часть системы источника альтернативной энергии
Как уже говорилось выше, выработанное источником альтернативной энергии электричество накапливается в аккумуляторах. Но что делать дальше с этой энергией, ведь аккумуляторные батареи выдают постоянный ток, непригодный для подключения бытовых электроприборов? На помощь приходит преобразователь тока – инвертор. При помощи данного прибора постоянный ток преобразовывается в переменный.
Об особенностях использования инверторов для создания систем автономного и бесперебойного электропитания, рассказывает главный инженер компании «СибКонтакт» Сергей Лесков:
– Инверторы встраиваются в различные системы по производству альтернативной энергии содержащие аккумулятор, тем самым обеспечивая весь дом электроэнергией с напряжением 220В и частотой 50 Гц. Инверторы с синусоидальной формой выходного напряжения являются обязательной частью установки автономного электропитания, так как к ним можно подключить любое, даже самое чувствительное оборудование.
При создании системы автономного и бесперебойного электропитания инверторы имеют ряд преимуществ по сравнению с дизель и бензогенераторами:
- Эти элементы системы работают в автономном режиме и не требуют присутствия человека;
- В режиме холостого хода потребляют минимум электроэнергии;
- Не требуют специальной вытяжной вентиляции помещения;
- Не требуют звукоизоляции помещения.
Таким образом, выбор эффективного источника альтернативной энергии для загородного дома, заключается в комплексном подходе к решению множества достаточно сложных задач, требующих знаний, опыта и умелых рук.
Узнать больше об альтернативной энергии в частном доме вы можете из соответствующей ветки форума. В нашей теме раскрывается вопрос использования ветрогенератора и о том, можно ли собрать его своими руками для энергоснабжения альтернативного дома.
Поучаствуйте в обсуждении нескольких вариантов применения тепловых насосов. Ознакомившись с видео на нашем сайте, вы увидите, как геотермальный насос обеспечивает теплом дом в случае отсутствия магистрального газа. А в этом разделе форума ведётся обсуждение инверторов.
Альтернативная энергия
Альтернативные источники энергии — ближайшее будущее или несбыточные проекты?
Нетрадиционная энергетика занимается поиском источников энергии, отличных от привычных, классических. Её основная цель — со временем обеспечить населению Земли ресурсы, использование которых позволит не думать об истощении природных запасов и не наносить вреда окружающей среде.
Вторая половина XIX века ознаменовалась для человечества небывалым техническим прорывом. С этого момента люди начали активно потреблять природные энергетические залежи: нефть, газ, уголь. Подсчитано, что, если не снизить уровень потребления нефти, то всего лишь через 50 лет она станет дефицитом. Необходимо искать новые возможности выработки энергии, чтобы полвека спустя не оказаться в состоянии глобального энергетического кризиса.
Виды альтернативных источников энергии
В большинстве регионов человек не может существовать без тепловой и электрической энергии, обеспечивающей его жизнедеятельность; без неё невозможно развитие индустрии и цивилизации вообще. Есть три главных требования, которым должен отвечать источник альтернативного питания. Он должен быть:
- возобновляемым;
- экономичным;
- экологичным.
Солнечные батареи (фотоэлектрические модули)
Учёные давно задумывались о том, как использовать энергию Солнца, и в середине XX века это вылилось в изобретение кремниевых солнечных панелей (батарей). Они преобразовывают солнечный свет в электричество, работая бесшумно и экологично, а использовать их можно практически везде.
Главный минус фотоэлектрических модулей — высокая стоимость вырабатываемого электричества: оно почти вдвое дороже энергии, полученной традиционными способами, за счёт размеров, цены кремниевых панелей и с учётом их сравнительно невысокой производительности.
Несмотря на то, что солнечные батареи пока не слишком выгодны, прогнозы оптимистичны: вскоре их стоимость снизится и экологически чистая энергия станет доступна многим.
Солнечные коллекторы
В отличие от солнечных батарей, коллекторы — гелиоустановки — собирают тепловую энергию Солнца. Они нужны главным образом для обеспечения тепла в домах и на производствах, горячего водоснабжения. Коллекторы бывают:
- вакуумными трубчатыми;
- плоскими высокоселективными;
- воздушными и открытыми (самый простой вариант, использующийся в быту в южных регионах).
Ввиду разницы конструкций отличаются и качества высокотехнологичных систем:
- у вакуумных значительно ниже теплопотери;
- плоские заметно дороже в производстве и установке;
- вакуумные значительно проще монтировать.
Ветрогенераторы
Ветряки все видели как минимум на фотографиях — гигантские пропеллеры на высоких столбах. Одна такая 50-метровая вышка способна вырабатывать 50 кВт/ч.
Ветрогенератор состоит из:
- основы с поворотной платформой;
- пропеллера, соединённого с генератором;
- преобразующего ток аккумулятора.
В 1931 году по проекту изобретателя Уфимцева в Курске была возведена первая в мире ветроэлектростанция с инерционным аккумулятором.
Стоимость энергии, выработанной таким образом, примерно равна цене на электричество, получаемое от теплоэлектростанций, с той разницей, что воздушные потоки — бесконечный ресурс, а процесс их обработки не сопряжён с выбросом токсичных веществ в атмосферу.
Недостаток ветряков — наилучшую производительность они демонстрируют только на открытых пространствах (к примеру, в степи), где высотные здания не мешают свободному распространению воздуха. Установленные в городе, ветряные вышки теряют 30–40 % эффективности.
Гидроэнергия
Альтернативная гидроэнергетика представлена в основном тремя типами установок:
- малыми;
- волновыми;
- приливными гидроэлектростанциями.
Малые ГЭС плохо подходят для промышленного использования ввиду их небольшой мощности, но вполне могут обеспечить электричеством несколько домов. Они вырабатывают практически бесплатную энергию, а выработка не зависит от причуд погоды, как в случае с солнечными батареями и ветряными вышками.
Малые гидростанции могут быть:
- колёсными;
- пропеллерными;
- роторными (на основе ротора Дарье, вращающегося благодаря разнице давлений на лопастях);
- водопадными (они не распространены в России, потому что у нас мало водопадов).
При желании и минимальном знании физики ГЭС-самоделку можно установить даже у себя на загородном участке. Она не потребует перекрытия русла реки и формирования водохранилища.
Волновая энергетика
Волновая станция — плавучее сооружение, использующее неисчерпаемую энергию волн, потенциально очень энергоёмкое. ВЭС дороги в изготовлении и установке, хрупки (поскольку чаще всего не рассчитаны на шторма), однако получаемая с их помощью электроэнергия практически бесплатна. В России существует пока единственный такой проект — возле мыса Шульц в Приморье.
Энергия приливов и отливов
Приливы и отливы вызываются активностью Луны, поэтому такие альтернативы классическим ГЭС можно называть лунными. Они очень бережно относятся к морским обитателям и дну, в отличие от обычных электростанций, вызывающих массовую гибель планктона. Производительность приливных станций неравномерна, но это не особенно критично, поскольку они — лишь часть большой энергосистемы.
В нашей стране есть только одна ПЭС — построенная в 1968 году Кислогубская в акватории Баренцева моря. Она обеспечивает электричеством посёлок с пятитысячным населением.
Энергия температурного градиента
На разных глубинах Мирового океана температура воды отличается, часто значительно, поскольку солнечные лучи нагревают только верхние слои воды, практически не попадая в её толщу. По сути, Мировой океан — самый крупный в мире природный коллектор, накапливающий энергию. Работа электростанций основана на переносе тепла с одновременным выделением энергии — её выработается тем больше, чем сильнее температурные различия.
Электростанции, эксплуатирующие температурный градиент, разрабатывались с конца XIX века, однако до сих пор функционируют по большей части в экспериментальном режиме, обеспечивая энергией главным образом самих себя. Тем не менее, перспективы у отрасли есть, поскольку научное сообщество обеспокоено грядущим истощением природных запасов и активно ищет альтернативные источники энергии.
Энергия жидкостной диффузии
Осмотическая энергостанция использует принцип диффузии жидкостей (осмоса). Она может быть установлена только в месте, где пресная вода вливается в солёную, то есть в устьях рек. В специальном резервуаре они смешиваются, что вызывает повышение давления в отсеке с морской водой, в результате чего вращается гидротурбина.
Осмотическая станция — непрерывный возобновляемый источник энергии, существующий в мире в единственном экземпляре — в городе Тофте в Норвегии. Сейчас она тестируется, но в ближайшее время планируется её коммерческий запуск — она будет осуществлять энергоснабжение предприятий.
Геотермальная энергия
Геотермальная альтернативная энергетика использует тепловую энергию недр Земли, запасы которой практически бесконечны — людям остаётся лишь изобрести способ добывать её оттуда.
Альтернативная энергия земных недр подразделяется на:
- петротермальную — энергию сухих горных пород;
- гидротермальную — жидкостную.
Геотермальные источники располагаются на территории многих государств и используются для энергоснабжения в Новой Зеландии, Исландии, Италии, Мексике, Китае, Индонезии, Японии и др.
Такие станции не выбрасывают вредные вещества в атмосферу, не зависимы от сезона и погоды, эффективны и не требуют много места, но, кроме преимуществ, имеют и недостатки:
- они требуют бурения скважин глубиной в несколько километров;
- в воде присутствуют токсины и радиоактивные элементы, а обратная её закачка сложна и не всегда целесообразна;
- наблюдаются большие теплопотери при транспортировке и добыче;
- есть данные, что эксплуатация скважин провоцирует сейсмическую активность.
Биотопливо
Биотопливо — современная альтернатива нефтяным продуктам. Это отходы быта и производства, подготовленные к утилизации путём сжигания. Они могут быть твёрдыми (брикетированное и пеллетированное древесное сырьё, отходы сельхозпродукции), жидким (биоэтанол, биодизель и др., в основном используется как горючее для двигателей внутреннего сгорания и энергокомплексов), газообразным (газ, получаемый в результате разложения отходов при помощи бактерий).
Биотопливо считается более экономным и экологичным, чем традиционное, но журнал Science не разделяет общего энтузиазма: авторы критики считают, что введение платы за выбросы углекислого газа от ископаемого горючего при игнорировании вреда от биотоплива приведёт к повальному уничтожению лесных угодий, которые будут вырубаться ради переработки в древесные пеллеты.
Использование
По большей части альтернативные источники электричества по всему миру работают в тестовых режимах, хотя кое-где уже обеспечивают нужды промышленности. Многие страны планируют ввести свои нетрадиционные электро- и теплостанции в массовую эксплуатацию в течение ближайших лет, поскольку обеспокоены истощением ресурсов газа, нефти и угля и тем ущербом, который электроэнергетика наносит окружающему миру.
Обширные возможности предоставляют нестандартные источники тепла и света частному хозяйству. Уже сейчас домовладелец может существенно снизить расходы на коммунальные услуги, если начнёт пользоваться:
- ветряком для электропитания ламп, который можно собрать самостоятельно в собственном гараже;
- солнечным коллектором для отопления помещений;
- возможностью получать газ из отходов сельскохозяйственной продукции и растительного мусора.
Есть ли будущее у альтернативных источников энергии
Несмотря на то, что альтернативные источники питания часто дороги и трудоёмки в производстве и вводе в эксплуатацию, когда будут построены, они на долгие годы станут энергоцентрами, бесперебойно поставляющими людям дешёвые и экологичные свет и тепло. В Российской Федерации сейчас доля нетрадиционных заменителей классических ЭС — менее 5 %, но в планах правительства постепенно повышать этот показатель.
Есть множество регионов, перспективных с точки зрения расположения:
- Кавказ, Краснодарский край, Дальний Восток могут стать отличными «донорами» солнечной энергии;
- на Чукотке, Камчатке и других побережьях удобно устанавливать ветровые и гидроэлектростанции.
Плюсы и минусы альтернативной энергии
О плюсах и минусах лучше говорить применительно к каждой альтернативе для получения электричества и тепла по отдельности, но есть и общие тенденции. В большинстве своём новые методы:
- наносят меньше урона природе в сравнении с классическими;
- более перспективны за счёт возобновляемости;
- в будущем, когда их использование будет налажено, будут обходиться дешевле;
- более безопасны: при их использовании невозможна авария, подобная произошедшей в 1986 году в 4-м энергоблоке ЧАЭС.
Сейчас альтернативная энергетика проходит стадию ввода в эксплуатацию и тестирования новых установок, поэтому они почти не распространены и очень дороги. Кроме того, существует проблема нестабильности (это относится к установкам, зависящим от сезонности и погоды), но этот вопрос можно будет решить за счёт массового использования разных способов выработки энергии совместно.
Недостатки и проблемы
Главный недостаток энергостанций нового поколения (кроме гидро-) — пока ещё низкие мощности и выработка, недостаточная для обеспечения ресурсами одной станции больших поселений и предприятий. Эту проблему можно будет решить только после того, как производство и монтаж установок будут поставлены на поток.
В обозримом будущем человечеству, скорее всего, не удастся полностью перестать использовать невозобновляемые природные ресурсы, но, если получится хотя бы на 50 % заменить их экологичными и экономичными альтернативными, — это уже можно будет считать успехом.
Отзывы
Для начала можно купить энергосберегающие светильники, таким образом электричества будет тратиться меньше, это актуально при использовании солнечных батарей. Интересно, бывают ли они беспроводными.
Алексей, г. Пермь
Солнечные батареи выглядят внушительно, но они не слишком-то эффективны. Хотя, наверное, прогресс есть, потому что пару десятилетий назад они почти вообще ничего не вырабатывали.
♻ Альтернативные источники энергии: время экономить
Казалось бы, чего не хватает современному человеку – живёт на всём готовом: свет, газ, вода — в избытке (исключая страны Африки и ЮАР). Но не каждый знает, что по прогнозам ученых уже в 2033 году некоторые страны будут полностью зависимы от поставок пресной воды. Именно поэтому большинство государств уже на протяжении последних 20-30 лет ищут альтернативные источники энергии. И…находят. Сегодня мы расскажем о некоторых из них и заглянем в недалекое, но прогрессивное будущее.
Альтернативные источники энергии – что это такое
Альтернативный источник энергии (во многих источниках вы можете встретить сокращение АИЭ) – это те ресурсы, для выработки которых не нужно прикладывать усилий, они уже вокруг нас. Это энергия солнца, отходы переработки живых организмов, вода, ветер, вторсырье. В отличие от традиционных ресурсов они более эффективны, дешевле и экологически безопасны. Россия, благодаря своей огромной территории, находится в одном из лучших положений.
Виды альтернативных источников энергии
Виды установок отличаются способом выработки энергии: они могу быть активными и пассивными, автономными и зависимыми. Кроме того, важную роль играет выбор источника энергии.
Энергия ветра и солнца
Если вы считаете, что такие приборы и установки – дело будущего, вы ошибаетесь. Солнечные батареи давно и эффективно используются в разных уголках планеты. Более того, такие батареи можно приобрести в обычном магазине. Вопрос только в расчете эффективности использования их в том или ином месте.
Для генерации электрической энергии комплектуются солнечные электростанции, основой которой служат солнечные батареи (панели), изготавливаемые на основе кристаллов кремния
Энергия солнца используется для работы тепловых установок. Там специальные солнечные коллекторы, накапливая энергию, преобразуют её в энергию тепловую. Мощность подобных установок зависит от количества и мощности отдельных устройств, входящих в состав тепловых и солнечных станций.
Если говорить об энергии ветров, то этот вид получения энергии основан на преобразовании кинетической энергии воздушных масс в электрическую энергию, используемую потребителями. Очень часто целые поля «ветряков» располагаются в долинах и пустынях, где сила ветров бывает колоссальной.
Основой ветровых установок служит ветровой генератор
Исполнение их может быть разным. Все генераторы различаются по техническим параметрам, габаритным размерам и конструкции. Они могут быть с горизонтальной и вертикальной осью вращения, различаться типом и количеством лопастей, могут располагаться даже в море.
Сила воды и тепло земли
Каждому ещё со школьной поры знакомо такое понятие как гидроэлектростанция. Мощнейшая сила воды используется на благо человеку не один десяток лет. Многокилометровые платины сдерживают давление огромных масс воды, течение которых помогают вырабатывать энергию.
Гидротурбина, является основой гидроэлектростанций
Ещё один способ получения электрической энергии путем преобразования энергии воды – это использование энергии приливов, посредством строительства приливных станций. Работа таких установок основана на использовании кинетической энергии морской воды в период приливов и отливов, происходящих в морях и океанах под воздействием объектов солнечной системы.
Вариантом использования альтернативных источников энергии – использование геотермальных вод. Кипящая вода помогает воздавать электроэнергию и передает тепло. Это происходит с помощью специального теплового насоса.
Для использования геотермальных вод используются специальные установки, посредством которых внутреннее тепло земли преобразуется в тепловую и электрическую энергии
Биотопливо
Биотопливо (переработка органического сырья или отходов) – один из перспективных способов добычи ресурсов. Современные технологии позволяют перерабатывать разные его виды — жидкое, твердое, газообразное и получать электрическую или тепловую энергию.
Твердые виды биотоплива — это дрова, топливные брикеты или пеллеты, газообразные – это биогаз и биоводород, а жидкие – биоэтанол, биометанол, биобутанол, диметиловый эфир и биодизель
В качестве биотоплива могут выступать отходы от обработки дерева (прессованные опилки), очисток орехов и семян. Данное топливо используют для выработки тепловой и электрической энергии на ТЭС. Из отходов сельскохозяйственных культур производится также биогаз и жидкое топливо для дизельных двигателей и установок, где они сжигается, в результате чего осуществляется производство тепловой и электрической энергий.
Плюсы и минусы использования
Как и любого топлива, у альтернативных источников энергии есть свои плюсы и минусы.
Плюсами использования являются:
- возобновляемость;
- экологичность;
- разнообразие вариантов использования;
- низкая себестоимость энергии.
- затраты на приобретение и установку оборудования, которое требует дорогостоящего ремонта;
- зависимость от внешних факторов (погодные условия);
- низкая мощность установок.
Альтернативные источники энергии – не дешевое удовольствие. Однако, такие вложения быстро окупаются
Альтернативные источники энергии для частных домов
Владельцы частных домов, благодаря использованию альтернативных источников энергии, могут существенно снизить расходы по коммунальным счетам или полностью отказаться от услуг поставщиков газа, электричества и тепла.
Солнечные виды энергетики
Если вы живете в относительно солнечном регионе (не жарком, а солнечном, к таковым может относится даже северный регион), вы можете поставить себе солнечную батарею или биоустановку. Тогда вы обеспечите себя электричеством и теплом.
Так, например, солнечная батарея площадью 1,4 м2 при хорошей освещённости выдаёт 24 В при мощности порядка 270 Вт.
Однако, чтобы создать полноценную систему, не зависящую от внешних факторов, придётся приложить усилия. Необходимо создать целую систему, которая включает в себя: аккумулятор (АКБ) для накопления излишков электроэнергии (задействуется в тёмное время суток и ненастную погоду); контроллер (необязателен, но рекомендован) предназначен для мониторинга уровня заряда АКБ, чтобы не допустить полной разрядки или перезаряда, а также для оптимизации работы солнечных панелей; инвертор, преобразующий постоянный ток в переменный и позволяющий получить напряжение в 220−230 В.
К сведению! В нашей стране уже работает ряд солнечных электростанций. Из них наиболее крупными являются: Орская им. А. А. Влазнева, установленной мощностью 40,0 МВт в Оренбургской области; Бурибаевская, мощностью 20,0 МВт и Бугульчанская, мощностью 15,0 МВт, в Республике Башкортостан. На полуострове Крым функционирует более десяти солнечных электростанций мощностью 20,0 МВт каждая.
Ветрогенераторы
В основе ветровых установок – также, как и для солнечных станций, электронные устройства. Контроллер и инвертор собираются достаточно просто с использованием существующих электрических схем и из элементов заводского производства. Самый важный элемент, ветрогенератор – можно изготовить из имеющихся запасных частей и материалов. Такие конструкции как правило устанавливают на возвышенностях и на больших открытых пространствах, даже в море.
Использование силы ветра для получения электричества особенно актуально в тех регионах планеты, где нет возможности использовать другие источники энергии
Установка для получения биогаза
Биогаз – один из экологически чистых альтернативных источников энергии, способ получения которого не оказывает большого влияния на окружающую среду. Этот вид топлива получают путём брожения сырья (отходов человека и животных). Они скапливаются в специальном резервуаре, для переработке которых оно населяется специальными бактериями, которые ускоряют процесс.
Этот вид биотоплива один из самых перспективных. Время «раскачки» зависит от объемов сырья и самой конструкции
В результате подобной переработки вырабатывается горючая смесь (60% метана, 35% углекислоты и 5% прочих видов газов), а также сероводород, который является потенциально опасным для человека. Полученный продукт проходит очистку и по трубам поступает к приборам-потребителям (отопительным котлам, газовым печам и т.д.) или при излишках в накопитель (газгольдер).
Важно! Ёмкость, где проходит брожение необходимо регулярно чистить. Остатки сырья используются в качестве удобрения. Таким образом вы получаете практически замкнутый цикл.
Биореактор можно приобрести в специализированных компаниях, заказать или сделать своими руками.
Статья по теме:
Дом с нулевым энергопотреблением: преимущества. Что нужно знать для перевода дома на нулевое энергопотребление; экономим на солнечных батареях: что требуется для сохранения бюджета, первоначальные затраты — читайте в публикации.
Есть ли будущее у альтернативных источников энергии
Альтернативные источники возобновляемой энергии достаточно интересное и перспективное направление. К примеру, существует несколько эффективных приёмом выработки воды из воздуха. Правда здесь необходимо использовать генератор. Будут ли найдены новые подходы к решению этих проблем и к усовершенствованию методик – покажет время.
Получится ли использовать ресурсы с умом – большой вопрос
Надеемся, наша статья была для вас полезной, а если остались вопросы, то задавайте их в комментариях, и наши эксперты с радостью на них ответят.
Альтернативные источники энергии
Мы каждый день пользуемся электричеством и воспринимаем горящий свет как само собой разумеющееся явление. Однако энергоресурсы не генерируются самостоятельно, и для их производства государство ежегодно тратит огромное количество финансовых средств. Данный процесс также загрязняет окружающую среду. Учёные стремятся решить эту проблему и одним из самых популярных вариантов являются альтернативные источники энергии, которые стоят дешевле и не причиняют вреда природе.
Количество видов альтернативных источников энергии постоянно увеличивается. Специалисты данной сферы предпринимают попытки создать устройства, которые конвертируют возобновляемые источники энергии в электричество. Это может быть солнечная энергия, ветер, тепло земли или биологическое топливо.
Каждый из источников изучается отдельно и на данный момент было создано несколько отдельных отраслей, которые направлены на развитие и создание более продвинутых устройств преобразования энергии. Возможно, уже очень скоро мы перестанем сжигать уголь или другие ресурсы планеты, а начнём использовать экологические чистые альтернативные источники энергии. Это позволит улучшить состояние окружающей среды и сэкономить огромное количество финансовых средств.
Солнечные батареи – один из самых популярных способов генерации электроэнергии
Индустрия солнечных батарей постоянно расширяется. По оценкам специалистов мощность такого среднестатистического источника электроэнергии каждый год увеличивается в три раза. Это свидетельствует о развитии данной области.
К основному преимуществу солнечной батареи относится экологическая чистота. Солнце не загрязняет природу, и использование панелей для конвертации электроэнергии не способствует созданию парникового эффекта. Если Россия продолжит использовать нефть в качестве основного способа для обеспечения населения электричеством, то этого природного ресурса вряд ли хватит более чем на 50 лет. Если использовать газ, то его хватит на 100 лет, а уголь можно будет жечь ещё 500 лет.
Однако не у каждой страны есть такие большие запасы природных ресурсов. В Великобритании и Франции нефти и газа вряд ли хватит больше чем на три года.
Вернёмся к солнечной энергии – она неисчерпаема и её ресурсами можно пользоваться в дневное время и даже в случае, если небо затянуто облаками. Установленная солнечная батарея обслуживается легко и быстро, а генерация энергии не требует ежедневного участия человека. Данный вид конструкции отличается прочностью и долговечностью. Срок эксплуатации источника энергии данного типа составляет более 25 лет.
В некоторых государствах использование солнечных батарей спонсируется со стороны государства. Например, если гражданин Франции устанавливает у себя дома солнечную батарею, то правительство может вернуть ему до 60% суммы потраченных денег. Многие выражают недовольство, что данный вид альтернативного источника энергии требует больших финансовых затрат. Однако каждый год стоимость таких батарей уменьшается.
Безусловно, ядерная энергия даёт гораздо больше электричества, однако история показывает, что на таких станциях может случиться авария. Если раньше основным препятствием для работы солнечных батарей была непогода, то современные модели «добывают» энергию в дневное время независимо от плотности облаков.
«Плантации» с солнечными батареями занимают много места, но если бы каждый владелец частного дома разместил такой элемент питания на крыше, то потребление энергии из обычного источника сократилось бы во много раз. Постоянное развитие технологии приводит к снижению цены солнечной батареи – сегодня её может позволить себе купить любая семья с постоянным доходом. Подержаный автомобиль стоит дороже, чем солнечная панель. Также многие используют солнечные коллекторы, которые отлично подходят для нагрева воды. Светодиодные фонари на солнечных батарейках уже успели стать трендовыми.
Ветрогенераторы – насколько востребовано данное устройство?
Энергия ветра может быть преобразована в электричество и для этого используют ветрогенераторы. Турбины данного типа имеют привлекательный внешний вид и обладают достаточно высокой эффективностью. Большинство моделей не требуют управления человеком и служат на протяжении долгого времени. Разделяют горизонтальные и вертикальные турбины.
Горизонтальные устройства оснащены флюгером и системой слежения. У вертикальных устройств нет необходимости ориентации на ветер и они отличаются большей надёжностью. Устройство работает даже если скорость ветра низкая — в таких условиях она продолжает производить энергию. Оно характеризуется низким уровнем шума и высокой долговечностью.
Многие специалисты спорят о том, какой вид ветряной турбины лучше. Вертикальные установки менее эффективны, чем горизонтальные – разница составляет в 10%. Преимущества ветрогенератора очевидны:
• Ветер есть везде. Это значит, что установка окупится в любом случае, так как она будет производить энергию на постоянной основе.
• Экономия финансовых средств для государства. Если массово внедрить данную технологию, то цена одного кВт снизится до 5 центов.
• Экологическая чистота. Использование этого альтернативного источника энергии не загрязняет атмосферу.
• Занимают мало места. В отличие от солнечной панели, они занимают гораздо меньшую площадь.
• Снижение зависимости от нефти. Этот природный ресурс когда-нибудь кончится и поэтому стоит инвестировать в ветрогенераторы.
Следует отметить, что на данный момент начальная стоимость установки достаточно высокая. Однако её цена будет снижаться по мере развития технологий.
Тепловые насосы – секрет популярности
Тепловой насос очень распространён среди владельцев домашнего хозяйства. Он применяется для отопления помещения. Если описать принцип его действия вкратце, то он конвертирует уличное тепло в «домашнее». Бывают насосы типа грунт-вода, вода-вода, вода-воздух и воздух-воздух. Внутри системы установлен капилляр, конденсатор, испаритель и компрессор. Устройство функционирует за счёт терморегулятора и хладагента, который циркулирует внутри устройства.
Хладагент забирает тепло у испарителя, который в свою очередь добывает тепло из воды, воздуха или почвы. Достоинства теплового насоса:
• Экономия денег. Устройство потребляет гораздо меньше электроэнергии, чем обычный котёл.
• Экологичность. Не производит вредные выбросы углекислого газа.
• Безопасная работа. Так как тепловой насос не использует топливо, то он не способен взорваться или загореться.
• Универсальность. С помощью этой системы можно нагревать и остужать воду.
• Надёжность. Вы наверняка удивитесь, но данная система намного надёжнее, чем стандартный котёл газового или электрического типа.
• Долгий срок эксплуатации. Они могут работать на протяжении 30 лет и сохранять работоспособность.
• Комфортное использование. Большинство моделей работают в автоматическом режиме.
Данное устройство стоит дороже, чем обычный котёл. Однако если вы заботитесь об окружающей среде, то это ваш вариант. В любом случае, цена не настолько велика и приобретение теплового насоса может позволить себе любой человек.
Биогаз – хороший способ заботы об окружающей среде
Биогаз состоит из метана и углекислого газа с примесями других газов. Он образуется благодаря активности бактерий, которые обрабатывают биологические отходы. Данный процесс получил название анаэробного сбраживания. После «работы» бактерий эти отходы можно использовать в качестве удобрений.
Этот способ получения энергии имеет хорошую экономическую выгоду. К основным достоинствам этого топлива можно отнести доступность – этот альтернативный источник энергии может позволить себе любой человек. Сырьевая база постоянно пополняется и благодаря этому методу решается один из самых насущных «экологических» вопросов – как расходовать скапливающийся мусор? Единственный недостаток данного вида добычи энергии заключается в том, что он способствует созданию парникового эффекта.
Вышеперечисленные способы добычи электроэнергии уже очень скоро станут применяться в большинстве развитых стран. Они выгодны не только в плане экономии денег, но и актуальны из-за своей экологичности и эффективности.