Диодный мост для сварочного аппарата своими руками

Выпрямитель для сварочного аппарата

Эти диоды имеют внушительные размеры, а их корпус сажается на алюминиевый радиатор. Причем корпус диода, а значит, и крупный радиатор находятся под напряжением, поэтому диоды с их радиаторами должны крепиться так, чтобы не имели контакта друг с другом, не касаясь токопроводящих частей корпуса сварочного аппарата.

Такое неудобство с креплением приводит к тому, что размеры собранного сварочного диодного моста слишком вырастают, увеличивая и усложняя конструкцию сварочного аппарата в целом. Использование такого же диода, но с другой полярностью (ВЛ200) позволяет объединить радиаторы в две пары.

У радиаторов, возможно, потребуется просверлить отверстие и нарезать резьбу, для крепления диодов.

В продаже есть уже готовые – интегрированные в одном корпусе диодные мосты. Размер одного такого диодного мостика сопоставим с размерами спичечного коробка или одного диода В200 без радиатора, при максимальном токе 30-50А, а цена гораздо ниже.

Если интегрированные диодные мосты соединить параллельно, то вместе они смогут выдерживать более значительные токи. Однако надежность такого сварочного выпрямителя будет существенно меньше чем выпрямителя из диодов типа В200.

Строго говоря, суммарный допустимый ток такого объединенного выпрямителя не равняется сумме максимальных токов входящих в него диодных мостов, они не могут обладать абсолютно одинаковыми параметрами, а значит, каждый пропускает через себя несколько различные по величине токи. Однако если собрать эту схему с некоторым запасом по мощности, учитывая ток короткого замыкания, то можно добиться более компактных размеров, чем в случае с В200. Дело в том, что корпуса диодных мостиков не находятся под напряжением и их все можно садить на один общий радиатор, и можно свободно крепить такой выпрямитель где удобно внутри корпуса, или снаружи, сварочного аппарата. Для выпрямителя может использоваться 3-5 интегрированных диодных мостов, обязательно одной и той же марки. Как показывает практика, они не сильно греются и без проблем могут выдерживать кратковременные перегрузки, притом, что сварочный аппарат большей частью вообще работает в кратковременном режиме. Для лучшей теплоотдачи, между диодными мостами и радиатором наносится теплопроводящая паста. Подсоединять контакты нужно обязательно пайкой, иначе будет сильный нагрев контактов.

На выпрямителе сварочного аппарата происходит неизбежное падение напряжения, поэтому на выходе выпрямителя напряжение будет где-то на 4-5В меньше чем напряжение холостого хода трансформатора (без конденсатора). При этом напряжение на выходе не будет строго постоянным – его форма будет пульсирующей.

Если проводить измерения в режиме холостого хода вольтметром постоянного тока, то его показания будут соответствовать чему-то вроде эффективного значения постоянного пульсирующего напряжения (показания примерно в 1,4-1,5 раза меньше напряжения пиков максимумов). В принципе, обычные вольтметры не предназначены для точного измерения подобного рода сигнала. Форму напряжения можно сгладить, установив на выходе конденсатор емкостью 5000-10000 мкФ. В этом случае показания вольтметра возрастут примерно в 1,4 раза, так как конденсатор на холостом ходу зарядится до уровня максимального по амплитуде напряжения. Конденсатор рекомендуется ставить особенно в том случае, если источник питания имеет низкое выходное напряжение (меньше 40В) и возникают трудности в момент зажигания сварочной дуги. При этом конденсатор лучше включить через сопротивление порядка 0,5-1 Ом.

Необходимость резистора обусловлено тем, что в момент зажигания дуги происходит касание конца электрода об металл изделия – то есть короткое замыкание. Если сопротивления в цепи конденсатора нет, то происходит мгновенный разряд конденсатора большой емкости, импульс высокого тока сопровождается громким щелчком, а часто разрушением кончика электрода или его мгновенным привариванием к металлу изделия. Работать с таким источником весьма неудобно, треск разрядов действуют на нервы. Дополнительный же резистор ограничивает ток, сглаживает разряд конденсатора, делая зажигание дуги легким и мягким.

Ремонт и доработки сварочных инверторов своими руками

Характеристики большинства бюджетных инверторов нельзя назвать выдающимися, в то же время мало кто откажется от удовольствия использовать оборудование со значительным запасом надёжности. Между тем существует немало способов усовершенствовать недорогой сварочный инвертор.

Типовая схема и принцип работы инвертора

Чем дороже сварочный инвертор, тем больше в его схеме вспомогательных узлов, задействованных в реализации специальных функций. А вот сама схема силового преобразователя остаётся практически неизменной даже у дорогостоящего оборудования. Этапы превращения сетевого электрического тока в сварочный достаточно легко проследить — на каждом из основных узлов схемы происходит определённая часть общего процесса.

С сетевого кабеля через защитный выключатель напряжение подаётся на выпрямительный диодный мост, сопряжённый с фильтрами высокой ёмкости. На схеме этот участок легко заметить, здесь расположены внушительные по размеру «банки» электролитических конденсаторов. У выпрямителя задача одна — «развернуть» отрицательную часть синусоиды симметрично вверх, конденсаторы же сглаживают пульсации, приводя направление тока практически к чистой «постоянке».

Схема работы сварочного инвертора

Далее по схеме находится непосредственно инвертор.

С понижающего трансформатора напряжение снимает выходной выпрямитель, ведь мы хотим сварку именно на постоянном токе. Благодаря выходному фильтру природа тока меняется с высокочастотного пульсирующего до практически прямой линии. Естественно, в рассмотренной цепи преобразований есть множество промежуточных звеньев: датчиков, управляющих и контрольных цепей, но их рассмотрение выходит далеко за рамки любительской радиоэлектроники.

Конструкция сварочного инвертора: 1 — конденсаторы фильтра; 2 — выпрямитель (диодная сборка); 3 — IGBT-транзисторы; 4 — вентилятор; 5 — понижающий трансформатор; 6 — плата управления; 7 — радиаторы; 8 — дроссель

Узлы, пригодные к модернизации

Важнейший параметр любого сварочного аппарата — вольт-амперная характеристика (ВАХ), за счёт неё и обеспечивается стабильное горение дуги при разной её длине. Правильная ВАХ создаётся микропроцессорным управлением: маленький «мозг» инвертора на ходу меняет режим работы силовых ключей и мгновенно подстраивает параметры сварочного тока. К сожалению, каким либо образом перепрограммировать бюджетный инвертор нельзя — управляющие микросхемы в нём аналоговые, а замена на цифровую электронику требует незаурядных знаний схемотехники.

Однако «умений» управляющей схемы вполне достаточно, чтобы нивелировать «криворукость» начинающего сварщика, ещё не научившегося стабильно удерживать дугу. Гораздо правильнее сосредоточиться на устранении некоторых «детских» болезней, первая из которых — сильный перегрев электронных компонентов, ведущий к деградации и разрушению силовых ключей.

Вторая проблема — использование радиоэлементов сомнительной надёжности. Устранение этого недостатка сильно снижает вероятность возникновения поломок через 2–3 года эксплуатации аппарата. Наконец, даже начинающему радиотехнику будет вполне по силам реализовать индикацию фактического сварочного тока для возможности работы со специальными марками электродов, а также провести ряд других мелких доработок.

Улучшение теплоотвода

Первый недостаток, которым грешит подавляющее большинство недорогих инверторных аппаратов — плохая схема отвода тепла с силовых ключей и выпрямительных диодов. Начинать доработку в этом направлении лучше с увеличения интенсивности принудительного обдува. Как правило, в сварочных аппаратах устанавливают корпусные вентиляторы с питанием от служебных цепей напряжением 12 В. В «компактных» моделях принудительное воздушное охлаждение может вовсе отсутствовать, что для электротехники такого класса, безусловно, нонсенс.

Достаточно просто увеличить воздушный поток путём установки нескольких таких вентиляторов последовательно. Проблема в том, что «родной» кулер скорее всего придётся снять. Чтобы эффективно работать в последовательной сборке, вентиляторы должны иметь идентичную форму и число лопастей, а также скорость вращения. Собрать одинаковые кулеры в «стопку» крайне просто, достаточно стянуть их парой длинных болтов по диаметрально противоположным угловым отверстиям. Также не стоит беспокоиться о мощности источника служебного питания, как правило её достаточно для установки 3–4 вентиляторов.

Если внутри корпуса инвертора недостаточно места для установки вентиляторов, можно приладить снаружи один высокопроизводительный «канальник». Его установка проще по той причине, что не требуется подключение к внутренним цепям, питание снимается с клемм кнопки включения. Вентилятор, разумеется, должен устанавливаться напротив вентиляционных жалюзеек, часть которых можно вырезать, чтобы снизить аэродинамическое сопротивление. Оптимальное направление потока воздуха — на вытяжку из корпуса.

Второй способ улучшить теплоотвод — замена штатных алюминиевых радиаторов на более производительные. Новый радиатор нужно выбирать с наибольшим количеством как можно более тонких рёбер, то есть с наибольшей площадью контакта с воздухом. Оптимально в этих целях использовать радиаторы охлаждения компьютерных ЦП. Процесс замены радиаторов довольно прост, достаточно соблюдать несколько простых правил:

  1. Если штатный радиатор изолирован от фланцев радиоэлементов слюдой или резиновыми прокладками, их нужно сохранить при замене.
  2. Для улучшения теплового контакта нужно использовать кремнийорганическую термопасту.
  3. Если радиатор нужно подрезать, чтобы он поместился в корпус, обрезанные рёбра нужно тщательно обработать надфилем, чтобы снять все заусенцы, иначе на них будет обильно оседать пыль.
  4. Радиатор должен быть плотно прижат к микросхемам, поэтому предварительно на нём нужно разметить и просверлить крепёжные отверстия, возможно, потребуется нарезать резьбу в теле алюминиевой подошвы.

Дополнительно отметим, что нет смысла менять штучные радиаторы отдельно стоящих ключей, замене подвергаются только теплоотводы интегральных схем или нескольких высокомощных транзисторов, установленных в ряд.

Индикация сварочного тока

Даже если на инверторе установлен цифровой индикатор установки тока, он показывает не реальное его значение, а некую служебную величину, масштабированную для наглядного отображения. Отклонение от фактической величины тока может составлять до 10%, что неприемлемо при использовании специальных марок электродов и работе с тонкими деталями. Получить реальное значение сварочного тока можно путём установки амперметра.

В пределах 1 тысячи рублей обойдётся цифровой амперметр типа SM3D, его даже можно аккуратно встроить в корпус инвертора. Основная проблема в том, что для измерения столь высоких токов требуется подключение через шунт. Его стоимость находится в пределах 500–700 рублей для токов в 200–300 А. Обратите внимание, что тип шунта должен соответствовать рекомендациям производителя амперметра, как правило, это вставки на 75 мВ с собственным сопротивлением порядка 250 мкОм для предела измерения в 300 А.

Установить шунт можно либо на плюсовую, либо на минусовую клемму изнутри корпуса. Обычно размеров соединительной шины достаточно для подключения вставки длиной около 12–14 см. Изгибать шунт нельзя, поэтому если длины соединительной шины недостаточно, её нужно заменить медной пластиной, косичкой из очищенного однопроволочного кабеля или отрезком сварочной жилы.

Амперметр подключается измерительными выходами к противоположным зажимам шунта. Также для работы цифрового прибора требуется подать напряжение питания в диапазоне 5–20 В. Его можно снять с проводов подключения вентиляторов или найти на плате точки с потенциалом для питания управляющих микросхем. Собственное потребление амперметра ничтожно.

Повышение продолжительности включения

Продолжительность включения в контексте сварочных инверторов более разумно называть продолжительностью нагрузки. Это та часть десятиминутного интервала, в которой инвертор непосредственно выполняет работу, оставшееся время он должен пребывать на холостом ходу и охлаждаться.

Для большинства недорогих инверторов реальная ПН составляет 40–45% при 20 °С. Замена радиаторов и устройство интенсивного обдува позволяют увеличить этот показатель до 50–60%, но это далеко не потолок. Добиться ПН порядка 70–75% можно путём замены некоторых радиоэлементов:

  1. Конденсаторы обвязки ключей инвертора нужно поменять на элементы той же ёмкости и типа, но рассчитанные под более высокое напряжение (600–700 В);
  2. Диоды и резисторы из обвязки ключей следует заменить на элементы с большей рассеиваемой мощностью.
  3. Выпрямительные диоды (вентили), а также MOSFET или IGBT-транзисторы можно заменить на аналогичные, но более надёжные.

О замене самих силовых ключей стоит рассказать отдельно. Для начала следует переписать маркировку на корпусе элемента и найти подробный даташит на конкретный элемент. По паспортным данным выбрать элемент для замены достаточно просто, ключевыми параметрами служат пределы частотного диапазона, рабочее напряжение, наличие встроенного диода, тип корпуса и предельный ток при 100 °С. Последний лучше рассчитать собственноручно (для высоковольтной стороны с учётом потерь на трансформаторе) и приобрести радиоэлементы с запасом предельного тока около 20%. Из производителей такого рода электроники наиболее надёжными считаются International Rectifier (IR) или STMicroelectronics. Несмотря на довольно высокую цену, крайне рекомендуется приобретать детали именно этих брендов.

Намотка выходного дросселя

Одним из наиболее простых и в то же время самых полезных дополнений для сварочного инвертора будет намотка индуктивной катушки, сглаживающей пульсации постоянного тока, которые неизбежно остаются при работе импульсного трансформатора. Основная специфика такой затеи в том, что дроссель изготавливается индивидуально для каждого отдельного аппарата, а также может со временем корректироваться по мере деградации электронных компонентов или при изменении порога мощности.

Для изготовления дросселя понадобится всего ничего: изолированный медный проводник сечением до 20 мм 2 и сердечник, желательно из феррита. В качестве магнитопровода оптимально подойдёт либо ферритовое кольцо, либо сердечник броневого трансформатора. Если магнитопровод набран из листовой стали, его нужно просверлить в двух местах с отступом около 20–25 мм и стянуть заклёпками, чтобы иметь возможность беспроблемно прорезать зазор.

Читайте также:  Архив проектов домов, коттеджей, бань

Дроссель начинает работать, начиная от одного полного витка, однако реальный результат виден, начиная с 4–5 витков. При испытаниях следует добавлять витки до тех пор, пока дуга не начнёт ощутимо сильно тянуться, мешая отрыву. Когда варить с отрывом станет затруднительно, нужно скинуть с катушки один виток и подключить параллельно дросселю лампу накаливания на 24 В.

Тонкая настройка дросселя выполняется с помощью сантехнического винтового хомута, которым можно уменьшить зазор в сердечнике, либо деревянного клина, которым этот зазор можно увеличить. Нужно добиваться, чтобы горение лампы при розжиге дуги было максимально ярким. Рекомендуется изготовить несколько дросселей для работы в диапазонах до 100 А, от 100 до 200 А и более 200 А.

Заключение

Все «навесные» дополнения, такие как дроссель или амперметр, лучше монтировать отдельной приставкой, которая включается в разрыв любой из сварочных жил посредством штекера типа байонет. Таким образом внутри корпуса инвертора сохранится достаточно пространства для вентиляции, а дополнительные устройства можно будет легко отключить за ненадобностью.

Нужно помнить, что кардинальной, глубокой модернизации провести не получится, иными словами, «РЕСАНТУ» в KEMPPI разумными силами и средствами не превратить. Однако изготовление приспособлений и мелкая доработка оборудования — отличный способ лучше изучить технологию дуговой сварки и проникнуться профессиональными тонкостями.

Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов

Особенность сборки диодного моста для сварочного аппарата

Диод – это полупроводниковый прибор, который обладает различной проводимостью в зависимости от прикладываемого напряжения. Имеет всего два вывода: анод и катод. При подаче прямого напряжения (на анод подается положительный потенциал по сравнению с катодом) он открыт. При подаче отрицательного напряжения он закрывается.

Эта особенность прибора широко используется в электротехнике, в частности диодный мост применяют для сварочного аппарата, чтобы выпрямлять переменный ток, улучшая качество сварки.

Основные характеристики

Главными параметрами, на которые обращают внимание при выборе выпрямителей для сварочных аппаратов, являются:

  • максимально допустимое постоянное обратное напряжение;
  • максимальный средний прямой ток за период;
  • рабочая частота переключения;
  • постоянное прямое напряжение при максимальном прямом токе;
  • максимально допустимая температура корпуса.

Амплитуда бытовой сети составляет около 310 В, поэтому нужно использовать диоды с обратным напряжением 400 В и выше. Прямой ток жестко связан с мощностью прибора, и на него также обращают внимание. Рабочая частота показывает, в каком выпрямителе можно использовать полупроводник, применять его в сетевом или выходном блоке инвертора.

Прямое напряжение полупроводника характеризует мощность рассеяния на самом приборе. Это позволяет рассчитать размеры радиатора или системы охлаждения. Предельная температура корпуса сварочного аппарата дает возможность предусмотреть схему защиты от перегрева.

Применение в сварке

В любом трансформаторном сварочном аппарате постоянного тока или инверторе присутствуют силовые диоды. Они предназначены для выпрямления переменного тока. Для повышения коэффициента полезного действия диоды подключают по мостовой схеме, в этом случае оба полупериода приходятся на нагрузку.

В трансформаторном сварочном аппарате выпрямительные диоды устанавливают на выходе вторичной обмотки. Сварочное оборудование имеет понижающий трансформатор, соответственно, напряжение холостого хода значительно ниже входного, поэтому здесь требуются приборы большой мощности и низкой частоты. Для этого подойдут выпрямительные диоды В200 (максимальный ток 200А).

Для сварочного инвертора требуется два выпрямителя. Один располагается на входе источника питания. Он преобразует переменный ток 220 вольт 50 Гц в постоянный, который преобразуется в дальнейшем в переменный ток высокой частоты (40-80 кГц).

При мощности аппарата 5 кВт выпрямительные диоды должны иметь обратное напряжение 600-1000 В и средний прямой ток 25-35 А при частоте 50 Гц.

Второй выпрямитель располагается после высокочастотного трансформатора. Здесь требования другие. Максимальный прямой ток должен быть не менее 200 А на частоте 80 кГц, а обратное напряжение превышать напряжение холостого хода (60-70 В).

В любом случае используются диоды из категории мощных, с площадкой для монтажа радиатора, поскольку без отведения тепла устройство быстро сгорит.

Особенность выпрямителей

Выпрямитель для сварочного аппарата выполняется по мостовой схеме. При изготовлении сварочного аппарата своими руками и применении диодов В200 нужно учитывать, что их корпус находится под напряжением.

Поэтому когда выпрямитель устанавливают на радиатор, он должен быть изолирован от остальных элементов схемы, от корпуса прибора и от соседних диодов тоже. А это создает определенные неудобства для сварщика.

Приходится использовать более крупный корпус. Для уменьшения габаритов аппарата применяют выпрямительный прибор ВЛ200, который имеет другую полярность. Это позволяет объединить полупроводники на два парных радиатора.

В последние годы стали выпускать довольно мощные диодные мосты в одном корпусе. По размерам такая конструкция из диодов примерно соответствует спичечному коробку, имеет площадку для посадки радиатора, максимальный прямой ток 30-50 А. Диодная сборка имеет значительно меньшую стоимость по сравнению с диодами В200.

Если по работе устройства требуется более мощный мост, то эту проблему можно легко решить, используя параллельное подключение мостовых сборок. Однако их надежность в таком случае будет ниже, чем у одиночных мощных диодов.

Установка

При использовании параллельной схемы соединения диодных мостов необходимо учитывать, что все они имеют некоторый разброс по параметрам.

Поэтому при подборе элементов необходимо делать это с некоторым запасом прочности. При соблюдении этого требования для сварочного аппарата можно получить диодный мост более компактный, чем при использовании одиночных диодов.

Диодные сборки позволяют размещать их на одном радиаторе, так как корпусы не находятся под напряжением. Это позволяет монтировать их в любом месте, и даже снаружи.

В зависимости от требуемого сварочного тока для выпрямителя могут потребоваться от 3 до 5 диодных сборок. Для лучшей теплоотдачи диодные мосты устанавливаются на радиатор через теплопроводящую пасту.

К контактам проводники рекомендуется подсоединяться пайкой, в противном случае могут быть потери мощности в месте контакта и его сильный нагрев.

Применение на практике

Для примера, рассмотрим инверторный аппарат TELWIN Force 165. Во входном выпрямителе используются диодные сборки GBPC3508. Выпрямительный мост GBPC3508 может работать с током 35 А, обратное напряжение – 800 В.

С ним вместе идет обязательно сглаживающий фильтр из конденсаторов большой емкости. Кроме этого имеется фильтр электромагнитной совместимости, который не пропускает помехи от инвертора в бытовую сеть.

На выходе инвертора используются мощные сдвоенные диоды с общим катодом. Они имеют высокое быстродействие в отличие от диодов расположенных на входе устройства.

Благодаря малому времени восстановления, менее 50 наносекунд, приборы успевают переключать высокочастотный ток на выходе вторичной обмотки.

В данном приборе используются сдвоенные диоды марок STTH6003CW, FFH30US30DN или VS-60CPH03, рассчитаны на прямой ток 30 ампер на один прибор (60 ампер на оба) и обратное напряжение 300 вольт.

Устанавливаются на радиатор. Для защиты полупроводников от перегрузки используется RC фильтр. Схема управления требует стабильный источник питания без бросков напряжения.

Для этого в приборе предусмотрены стабилитроны или уже готовый интегральный стабилизатор, которые обеспечивают стабильное питание на микросхемах управления. В результате получается компактное устройство, позволяющее качественно варить металл.

Диодно-тиристорный выпрямитель со схемой управления для сварочного аппарата

В различных изданиях попадались публикации на данную тему, но положительного результата добиться не удавалось. Дело в том, что если просто подключить к трансформатору диодный или диодно-тиристорный выпрямитель, на выходе получается напряжение с пульсацией 100 Гц. При сварке электродом для постоянного тока это достаточно много. В результате дуга нестабильна и постоянно срывается. Не помогает и установка в разрыв вторичной цепи сглаживающего дросселя. Но когда сварочный аппарат стоит в холодном гараже или под навесом на улице, где температура воздуха зимой опускается до -15. -25°С, и необходимо срочно что-то приварить, достаточно сложное электронное устройство начинает давать сбои.

Поэтому была собрана более простая схема выпрямителя, которая неплохо показала себя даже в зимний период.

Содержание / Contents

  • 1 Схема
  • 2 Конструкция и детали

↑ Схема

Устройство (рис.1) состоит из сварочного трансформатора (промышленного или самодельного), диодно-тиристорного выпрямителя со схемой управления, сглаживающего конденсатора С1 и дросселя L1.

Фактически — это простой регулятор мощности. Так как питание схемы управления стабилизировано, установленное значение сварочного тока поддерживается довольно стабильно. Из-за наличия в схеме фильтрующих элементов С1 и L1, пульсаций напряжения на выходе практически нет. Дуга держится надежно, и качество шва получается высоким. Схема управления — это фазоимпульсный генератор на аналоге однопереходного транзистора, собранный на двух транзисторах разной проводимости. Питается от вторичной обмотки сварочного трансформатора Т1 через диодный мост VD1 и стабилизатор, образованный стабилитронами VD2, VD3. Их можно заменить одним на соответствующее напряжение стабилизации. Резистор R1 ограничивает ток, протекающий через стабилитроны. В зависимости разных выходных напряжений сварочных трансформаторов приходится подбирать R1 для оптимального тока стабилизации стабилитронов VD2, VD3 и устойчивой работы фазоимпульсного генератора.
Переменным резистором R2 производится регулировка сварочного тока. Он изменяет время заряда конденсатора С1 до напряжения открывания ключа на транзисторах VT1 и VT2.
При желании расширить диапазон регулировки тока (в меньшую сторону), увеличивается сопротивление R2 до 100 kOm. Управление мощными тиристорами VS1, VS2 , производится с помощью
маломощных VS3 и VS4, которые, в свою очередь, запускаются генератором через импульсный трансформатор T2.

↑ Конструкция и детали

В моем варианте выпрямитель с регулятором выполнен отдельным блоком и присоединяется к сварочному аппарату гибкими перемычками примерно 0,5 м длиной. Это более удобно, так как не надо переделывать уже готовый сварочный аппарат, к тому же, можно варить как постоянным, так и переменным током. При таком исполнении выпрямительный блок можно подключать к любому сварочному трансформатору. Диоды и тиристоры установлены на отдельных ребристых радиаторах (рис.2).

Все соединительные перемычки выполнены многожильным медным проводом с контактными клеммами на концах под болтовое соединение. Электронная схема управления выполнена на печатной плате (рис.3), хотя и объемный монтаж, собранный качественно, ничуть не хуже.

Импульсный трансформатор Т2 — марок ТИ-3; ТИ-4; ТИ-5, с коэффициентом трансформации 1:1:1. Его можно намотать самому на ферритовом кольце, например, 32x20x6 МН2000. Все обмотки содержат по 100. 150 витков медного обмоточного провода марки ПЭВ, ПЭЛШО 0,25. 0,3 мм. Перед намоткой сердечник необходимо обмотать слоем лакоткани. Конденсатор С1 набран из 4 конденсаторов по 15000 мкФ с рабочим напряжением не менее 80В. Так как при замыкании и размыкании сварочной цепи и при горящей дуге токи подпитки, протекающие через конденсаторы, очень велики, то соединять конденсаторы необходимо по схеме “звезда” (от одной соединительной клеммы идут 4 провода на вывод “+” каждого конденсатора, и от второй клеммы — также 4 провода на вывод “-” конденсаторов). Сечение каждого провода выбрано таким, чтобы суммарное сечение всех 4 проводов было не меньше сечения питающих силовых кабелей.

При недоборе емкости кондесатора С1, 44000 мкф (два импортных по 22000 мкф на 90 в,) при работе аппарата кондесаторы греются от увеличенных токов (заряд-розряд), при четырех импортных по 22000 мкф на 90 в, при очень длительной работе в режиме сварки немного теплые. Практика показала, что С1 лучше работает из большего количества кондесаторов меньшей емкости.

Дроссель намотан на сердечнике площадью 20. 30см2, с немагнитным зазором 0,5. 1 мм. Количество витков может быть от 25 до 60. 80. Чем больше витков, тем лучше, но ухудшается отвод тепла от внутренних слоев обмотки. Провод для намотки должен иметь сечение, не меньшее площади сечения провода, которым намотана вторичная обмотка трансформатора. Это касается и всех перемычек, которыми сделаны соединения силового блока.

Сварочный ток может достигать 100. 180А, в зависимости от мощности сварочного трансформатора. Это надо учитывать при монтаже.
При болтовом соединении надо соблюдать правило: сварочный ток не должен протекать через болт, если, конечно, он не медный или латунный. Это в основном касается входных и выходных клемм. Один из вариантов, как можно сделать, показан на рис.4.

Корпус выпрямителя желательно изготовить из негорючего материала, но можно даже из фанеры, если позволяет объем и отступить подальше от нагревающихся радиаторов.
В корпусе обязательны вентиляционные отверстия. Ручка регулятора тока устанавливается на корпусе, и вокруг наносится шкала с делениями — для более удобной установки тока. Для удобства регулировки рабочего тока я установил контрольную лампочку накаливания 110 в минимальной мощности по степени которой я ориентировался при установке тока сварки. В качестве предохранителя в первичной цепи трансформатора используется автомат на соответствующий рабочий ток.
Вентилятор для принудительного охлаждения необходимо использовать с достаточно приличной по размерам крыльчаткой. Все это создает условия для безопасной, более надежной работы устройства.

Читайте также:  Бистабильные реле для освещения дома

P.S. Приношу свои извинения за низкое качество снимков. Они пересняты телефоном (Nokia N73) со старых распечаток струйника.
Нет возможности сделать новые фото с аппарата так как он продан.

Камрад, рассмотри датагорские рекомендации

🌻 Купон до 1000₽ для новичка на Aliexpress

Никогда не затаривался у китайцев? Пришло время начать!
Камрад, регистрируйся на Али по нашей ссылке. Ты получишь скидочный купон на первый заказ. Не тяни, условия акции меняются.

🌼 Полезные и проверенные железяки, можно брать

Куплено и опробовано читателями или в лаборатории редакции.

Самодельные сварочные аппараты, полуавтоматы, схемы

Svapka.Ru
  • Самодельные полуавтоматы
  • Отдельные блоки
  • Самодельные от посетителей сайта
  • Разное
  • Сварочный полуавтомат Svapka.Ru Vol 3.0 от А до Я
  • Радиолюбительские технологии

Диодный мост для сварочного полуавтомата

Самодельный диодный мост

При конструировании сварочного полуавтомата всегда возникает вопрос, какие силовые диоды использовать в диодном мосте? Диодный мост это схема преобразования переменного напряжения в постоянное.

Выбор диодного моста для сварочного полуавтомата

Можно конечно купить дорогие диоды типа В200 собрать из них полноценный выпрямительный мост, собрать сварочный полуавтомат с большим запасом по току и пользоваться долгое время не задумываясь ни о чем.

Но не всегда цель оправдывает средства. Исходя из практики вы варите аппаратом 50% времени (а иногда на много меньше), то есть подготавливаете деталь к сварке, потом варите. После сварки вы опять подготавливаете деталь к сварке (как раз это время ваш сварочный полуавтомат находится в режиме ожидания) и этого времени вполне достаточно для охлаждения диодного моста, если в нем применяются менее мощные диоды.

Схема диодного моста

Путем проб и ошибок, опробовав разные варианты компоновки диодного моста, пришла идея собрать его на не дорогих диодных сборках типа KBPC5010 стоимостью по 50 рублей за штуку. Многие задаются вопросом, что такое выпрямитель сварочный, ответ на этот вопрос найдете в этой статье.

Суть идеи в том, что бы соединить диодные сборки KBPC5010 параллельно. Но так как у каждой сборки разное внутреннее сопротивление это приводило к мысли, что разность температур диодных мостов будет разная и ощутимая. Но все таки мы решили попробовать.

Каждая сборка KBPC5010 рассчитана на ток 50 ампер. Ниже приведена схема соединения шести сборок в один диодный мост рассчитанный на ток 300А.

Сборка диодного моста для сварки

Для того что бы охлаждать сборки, был взят алюминиевый радиатор площадью примерно 800 см. кв.

Подготавливаем поверхность радиатора (сверлим отверстия, нарезаем резьбу для крепления сборок). Для улучшения теплоотдачи используем теплопроводную пасту КПТ-8.

Закрепляем диодные сборки болтами М6 с помощью трубчатого ключа.

Распаиваем схему медной шиной. В данном случае мы использовали шинку 10 мм.кв. для припайки к выводам сборок и 20 мм.кв. для входа выхода сварочного тока.

Совет – обязательно припаивайте шинку к выводам диодных мостов. Если вы соедините мосты с помощью клемм без пайки, то концы выводов мостов будут очень сильно греться (проверено).

Обрабатываем все места пайки лаком.

Недорогой диодный мост для сварки

В результате получился небольшой диодный мост, что очень удобно при компоновке в корпус сварочного полуавтомата.

Испытания проводились на токе сварки 100 ампер в интенсивном режиме (сварка велась непрерывно) в течении 10 минут. Радиатор нагрелся до температуры 50 градусов.

Ощутимой разности температур в сборках замечено не было (проверялось на ощупь).

Если планируется использовать более мощные токи, то можно увеличить количество сборок.

Вывод: Мы получили недорогой (300 рублей) мощный диодный мост для сварочного полуавтомата.

Если возникнут вопросы, задавайте их в комментариях.

Автор статьи и фото: Admin Svapka.Ru

Похожие записи

Известная тема, достаточно давно практикуется самодельшиками-сваркостроителями

Эта тема давно практикуется не только “самодельшиками-сваркостроителями”, но заводами-изготовителями. Мне встречались сварочные аппараты для сварки штучными электродами и полуавтоматы, в которых по 6 диодов параллельно в каждом плече. Очевидно таким образом борятся за снижение себестоимости.

Чесно говоря фигня , летят эти зворки при такой схеме включения как фанера с эйфелевой башни . Сам проктиковал такую схему давно и отказался так как сразу вроде работает а потом в самый не подходящий момент стреляют. В ся причина в том эти зборки имеют разное внутреннее сопротивление и поєтому токи в каждом мосту разные. была попытка их уровнять, я ставил последовательно с каждым мостом намотанное из толстого нихрома сопративление (десятки ома) при этом увиличелся размер моста и его теплотворность, пришлось ставить винтелятор. в конечном итоге его размер не уступал мосту на диодах В200. Так что не тратьте деньги и время ставте проверенныю годами схему. Или надо искать альтернативу на мощьных полевиках.

У меня такая же конструкция (при токе сварки 120А и четырех мостиках)используется для работы электродом 3 мм уже третий год. И все слава богу до сих пор работает хотя после 4- 5 электродов нагревается до 50- 60 градусов. Но для дома редко приходится варить много и потому эта затея вполне себя оправдывает. А один диод В200 с радиатором сейчас стоит примерно 6- 8$, что сопоставимо с четырьмя мостиками кврс 5010. Но если бы деньги были- то выбрал бы В200.

Сергей я удивлен. Но чего бы мне врать. у меня один такой мост с 6-ю КБРСами отработал пол года, я и резал на нем и варил (электрод 3-4мм) а потом надо было запорожец разрезать так они у меня после электрода двойки один за одним погорели. с тех пор больше месяца не один такой мост не отхаживал. Но коль у вас работает слава богу, пусть и дальше не подводит.

Собираю похожий аппарат на таких мостах. Только радиаторы ставлю для каждого отельные

600 см*2. Просто такие нашел. Плюс кандеры 100В 28000Мк, а на первичку хочу поставить 160Мк 600В. А также пропеллер на обдув этого дела. Но по отзывам о мостах думаю поставить еще пару.

Плюс кандеры 100В 28000Мк, а на первичку хочу поставить 160Мк 600В. А также пропеллер на обдув этого дела. Но по отзывам о мостах думаю поставить еще пару.

Ещё пару мостов – это на пользу и обдув тоже, а вот конденсаторы не стоит – дополнительная импульсная нагрузка.

Андрей пишет верно:

эти зборки имеют разное внутреннее сопротивление и поєтому токи в каждом мосту разные

Для того, чтобы ток через отдельную сборку не превышал предельно допустимый, их надо брать с запасом. Кроме этого для надёжной работы желательно чтобы коэффициент использования диодов по току был 0,7-0,8.

у меня один такой мост с 6-ю КБРСами отработал пол года, я и резал на нем и варил (электрод 3-4мм) а потом надо было запорожец разрезать так они у меня после электрода двойки один за одним погорели. с тех пор больше месяца не один такой мост не отхаживал.

Если в начале мост отработал пол года и при электроде 3-4 мм,а потом “больше месяца не отхаживал”, надо поискать причину в другом месте.

У меня такая же конструкция (при токе сварки 120А и четырех мостиках)используется для работы электродом 3 мм уже третий год.

Коэффициент запаса по току: 120/200=0,6.

Что и подтверждает написанное выше.

диодный мост в одно или двух фазную схему свар.транса дело бестолковое и даже вредное кроме увеличения пульсации и следовательно затухания дуги в каждом полупериоде с обилием брызг получаете и доп. нагрузку на пер. обмотку и на пит. сеть.

P.S.за 35 лет в этом деле не первй раз встречаю когда пытаются на выпр.пол.период сварку прикрутить в итоге получаете все тот же переменник только с худшей характеристикой. для свар.аппарата нужно 3 выпр.пол.периода все остальное от блудливого.

для этого и создали схему с инвертированием – инвертор.сварочный

Разрешите обратить Ваше внимание на следующие факты

1) с точки зрения выравнивания токов через диоды сейчас широко применяют прием нестандартного включения моста, (см. прикрепленный рисунок). В этом случае уже обеспечена практическая идентичность в том числе и температурного режима по крайней мере двух 50 амперных диодов, включенных параллельно, в любой момент времени. А мы знаем, что сварочный ток для электрода диаметром 3 мм не превышает этой величины. Тем не менее ставим в каждое плечо по 3 шт. моста. – резерв надежности.

Диод В-200 стоит 500 – 600 Руб. за 1 шт., соответственно пара стоит 1000 – 1200 руб.

Один 50 амперный мост стоит около 50 рублей.

3) у автора этой ветки применен классический мост (правильное название, если мне не изменяет память, – мост Гретца). Недостаток этой схемы в том, что в любой момент времени на пути тока два P-N перехода, на каждом из которых выделяется тепло.

В мировой практике такого вида мост применятся редко. Гораздо лучше схема двухполупериодного выпрямителя с двумя диодами – в этом случае в любой момент времени на пути тока один P-N переход и тепла выделяется в 2 раза меньше. Вы скажете, что выходная обмотка для такого случая имеет удвоенное число витков. Правильно! Но сечение провода каждой полуобмотки в два раза меньше, так как она отдыхает пол периода, соответственно общий вес и объем обмотки будет практически тот же, но мотать более тонкий провод гораздо легче да и достать его гораздо проще, чем шину . Ну и в любом случае 2 диода дешевле чем 4.

4) У этой темы есть родственный форум – я на него наткнулся в процессе написания данного текста т.е. только что – вот ссылка на этот форум, но написанное мною относится и к тому форуму

Вот он: «Сварочный аппарат своими руками» principact.ru/content/view/200/108/1/5/

Прикрепленный рисунок -Это фрагмент схемы входного выпрямителя инвертора «Сварог».

Выпрямитель для сварочного аппарата

Авторизация на сайте

Конструкция 1-го выпрямителя:

Выпрямитель объединен с тороидальным трансформатором и вентилятором воздушного охлаждения. Непосредственно сам выпрямительный мост здесь собран на диодах ДЛ-132-80-10, установленных в центре тора на кронштейны-радиаторы из отрезков алюминиевого уголка. Тепловой режим для мощных полупроводниковых вентилей – наиболее благоприятный. Ведь каждый из диодов практически со всех сторон омывается воздушным потоком, засасываемым снизу (из-под подставок) и интенсивно прогоняемым вентилятором через «мини-аэродинамическую трубу» – внутреннюю воронку (окно) тора.

Правда, для столь свободного «продувания» пришлось побеспокоиться об оптимальности компоновки агрегата. В частности, предусмотреть, чтобы отверстия сравнительно большого диаметра были и в основании, и в стяжной крышке, к которой крепится (благодаря имеющемуся фланцу) трёхфазный многолопастный вентилятор УВО-2,6-6,5-У4. А чтобы воздухозабор шёл снизу тоже без помех, высота привинчиваемых к основанию подставок должна быть не менее 20 мм.

Теперь несколько слов об особенностях подсоединения диодного моста к сварочному трансформатору. При интенсивном использовании аппарата для сварки один из выводов диодного моста подключается к общей клемме, а другой, являясь в данном случае «плавающим», состыковывается с тем или иным выводом трансформатора. Если необходимы напряжения 6 В, 12 В, 18 В и т.д., то оба ввода диодного моста делаются переходными («плавающими»).

Выпрямитель позволяет улучшить зажигание дуги, поскольку увеличивается напряжение холостого хода, и повысить качество сварки. Кроме того, нельзя забывать, что на плюсовом выводе выделяется больше тепла. И свойство это, как говорится, грех не использовать при сварке тонкостенных деталей (здесь «+» подводится к электроду).

Рис.1 Сварочный аппарат постоянною тока:

1 – подставка (дерево, фанера, s20, 4 шт.), 2 – основание (фанера, s10), 3 – шуруп с потайной головкой (8 шт.), 4 – вывод контактный (4 шт.), 5 – наконечник клеммный (4 шт.), 6 – шпилька М6 (бронза или латунь, 4 шт.), 7 – гайка М6 (бронза или латунь, 16 шт.), 8 – шайба (бронза или латунь. 20 шт.), 9 – гайка-барашек М6 (бронза или латунь, 4 шт.), 10 – ручка поворотная откидная (от списанной радиоаппаратуры, 2 шт.), 11 – вентилятор трёхфазный УВО-2,6-6,5-У4 (в круглом корпусе с фазосдвигающим конденсатором 2 мкФ), 12 – винт М4 с шайбой Гровера (3 шт.), 13 – крышка стяжная с центральным отверстием под вентилятор (фанера, s10), 14 – сердечник тороидальный (из статора асинхронною двигателя), 15 – обмотка трансформатора первичная (число витков, отводы, диаметр провода – расчётные), 16 – слои изоляционные (толщина и количество – расчётные), 17 – прокладка кольцевая (электротехнический картон, s1. 2,5, 2 шт.), 18 – изоляция наружная (намотка лакотканной лентой в 1 – 2 слоя), 19 – кронштейн (алюминиевый уголок 75×50, 2 шт.), 20 – диод полупроводниковый ДЛ-132-80-10 (4 шт.), 21 – кронштейн центральный (алюминиевый уголок 60×60), 22 – шуруп с полукруглой головкой (6 шт.); D1 и D2 – по габаритам вентилятора.

Конструкция 2-го выпрямителя:

Это автономный выпрямитель (его можно использовать практически с любым прибором на ток 200 А). При простой принципиальной электрической схеме диодного мостика примитивно-стандартной данную конструкцию вообще-то не назовешь. Необычность её состоит в использовании двух групп разнополярных диодов – В200 и ВЛ200 (внешнее их отличие – соответственно, зелёные и малиновые корпуса). Значит, есть реальная возможность соединить радиаторы диодов в каждой из групп. То есть в одной группе на радиаторе получается «+», в другой «-». Однородные соединяются шпильками М8, а между разнородными устанавливается резиновая прокладка. Вся конструкция получается предельно компактной и надёжной.

Рис.2. Выпрямитель «Малыш» для «сварочника»:
1 – радиатор диодный (4 шт., стянуты попарно), 2 – панель сетевая (текстолит, фанера, s10), 3 – шпилька М8 (бронза или латунь, 4 шт.), 4 гайка М8 (бронза или латунь, 18 шт.), 5 – шайба (бронза или латунь, 28 шт.), 6 – болт М8 клеммный (бронза или латунь, 2 шт.), 7 – диод мощный выпрямительный В200 (2 шт.), 8 – диод мощный выпрямительный ВЛ200 (2 шт.), 9 – вывод от выпрямителя к нагрузке (2 шт.), 10 – панель выпрямительная (фанера, s10), 11 – прокладка изоляционная (резина велокамеры); а) – принципиальная схема выпрямительного моста.

И ещё одна особенность здесь налицо: выводы диодов можно использовать в качестве ручек – для переноски выпрямителя. Тем более что масса всего устройства не превышает 5 кг.

Особенность сборки диодного моста для сварочного аппарата

Диод – это полупроводниковый прибор, который обладает различной проводимостью в зависимости от прикладываемого напряжения. Имеет всего два вывода: анод и катод. При подаче прямого напряжения (на анод подается положительный потенциал по сравнению с катодом) он открыт. При подаче отрицательного напряжения он закрывается.

Эта особенность прибора широко используется в электротехнике, в частности диодный мост применяют для сварочного аппарата, чтобы выпрямлять переменный ток, улучшая качество сварки.

Основные характеристики

Главными параметрами, на которые обращают внимание при выборе выпрямителей для сварочных аппаратов, являются:

  • максимально допустимое постоянное обратное напряжение;
  • максимальный средний прямой ток за период;
  • рабочая частота переключения;
  • постоянное прямое напряжение при максимальном прямом токе;
  • максимально допустимая температура корпуса.

Амплитуда бытовой сети составляет около 310 В, поэтому нужно использовать диоды с обратным напряжением 400 В и выше. Прямой ток жестко связан с мощностью прибора, и на него также обращают внимание. Рабочая частота показывает, в каком выпрямителе можно использовать полупроводник, применять его в сетевом или выходном блоке инвертора.

Прямое напряжение полупроводника характеризует мощность рассеяния на самом приборе. Это позволяет рассчитать размеры радиатора или системы охлаждения. Предельная температура корпуса сварочного аппарата дает возможность предусмотреть схему защиты от перегрева.

Простая конструкция сварочного аппарата постоянного тока

По принципу монтажа можно выделить следующие части:

  • самодельный трансформатор для сварки;
  • цепь его питания от сети 220;
  • выходные сварочные шланги;
  • силовой блок тиристорного регулятора тока с электронной схемой управления от импульсной обмотки.

Импульсная обмотка III расположена в зоне силовой II и подключается через конденсатор С. Амплитуда и длительность импульсов зависят от соотношения числа витков в емкости.

Применение в сварке

В любом трансформаторном сварочном аппарате постоянного тока или инверторе присутствуют силовые диоды. Они предназначены для выпрямления переменного тока. Для повышения коэффициента полезного действия диоды подключают по мостовой схеме, в этом случае оба полупериода приходятся на нагрузку.

В трансформаторном сварочном аппарате выпрямительные диоды устанавливают на выходе вторичной обмотки. Сварочное оборудование имеет понижающий трансформатор, соответственно, напряжение холостого хода значительно ниже входного, поэтому здесь требуются приборы большой мощности и низкой частоты. Для этого подойдут выпрямительные диоды В200 (максимальный ток 200А).


Для сварочного инвертора требуется два выпрямителя. Один располагается на входе источника питания. Он преобразует переменный ток 220 вольт 50 Гц в постоянный, который преобразуется в дальнейшем в переменный ток высокой частоты (40-80 кГц).

При мощности аппарата 5 кВт выпрямительные диоды должны иметь обратное напряжение 600-1000 В и средний прямой ток 25-35 А при частоте 50 Гц.

Второй выпрямитель располагается после высокочастотного трансформатора. Здесь требования другие. Максимальный прямой ток должен быть не менее 200 А на частоте 80 кГц, а обратное напряжение превышать напряжение холостого хода (60-70 В).

В любом случае используются диоды из категории мощных, с площадкой для монтажа радиатора, поскольку без отведения тепла устройство быстро сгорит.

Принцип работы тиристора

Детали регулятора подключены как параллельно, так и встречно друг другу. Они постепенно открываются импульсами тока, которые образуются транзисторами vt2 и vt1. При запуске прибора оба тиристора закрыты, С1 и С2 это конденсаторы, они будут заряжаться через резистор r7. В тот момент, как напряжение какого-либо из конденсаторов достигнет напряжения лавинной пробивки транзистора, тот открывается, и через него и идёт ток разряда, совместного с ним конденсатора. После открытия транзистора открывается соответствующий ему тиристор, он подключит нагрузку в сеть. Затем начинается противоположный по признакам полупериод переменного напряжения, что предполагает закрытие тиристора, затем следует новый цикл подзарядки конденсатора, уже в противоположной полярности. Далее открывается следующий транзистор, но снова подключит нагрузку в сеть.

Особенность выпрямителей


Выпрямитель для сварочного аппарата выполняется по мостовой схеме. При изготовлении сварочного аппарата своими руками и применении диодов В200 нужно учитывать, что их корпус находится под напряжением.

Поэтому когда выпрямитель устанавливают на радиатор, он должен быть изолирован от остальных элементов схемы, от корпуса прибора и от соседних диодов тоже. А это создает определенные неудобства для сварщика.

Приходится использовать более крупный корпус. Для уменьшения габаритов аппарата применяют выпрямительный прибор ВЛ200, который имеет другую полярность. Это позволяет объединить полупроводники на два парных радиатора.

В последние годы стали выпускать довольно мощные диодные мосты в одном корпусе. По размерам такая конструкция из диодов примерно соответствует спичечному коробку, имеет площадку для посадки радиатора, максимальный прямой ток 30-50 А. Диодная сборка имеет значительно меньшую стоимость по сравнению с диодами В200.

Если по работе устройства требуется более мощный мост, то эту проблему можно легко решить, используя параллельное подключение мостовых сборок. Однако их надежность в таком случае будет ниже, чем у одиночных мощных диодов.

Как сделать дроссель самостоятельно?

Вполне реальным является самостоятельное изготовление дросселя в домашних условиях. Это имеет место при наличии прямой катушки с достаточным количеством витков нужного шнура. Внутри катушки проводятся прямые пластинки из металла от трансформатора. Путём выбора толщины этих пластинок, есть возможность выбора стартового реактивного сопротивления.

Рассмотрим конкретный пример. Дроссель с катушкой с 400 витками и шнура диаметром 1,5 мм, заполняется пластинками с сечением 4,5 квадратных сантиметров. Длина катушки и провода должна быть одинакова. В результате трансформаторный ток 120 А уменьшится наполовину. Такой дроссель изготавливается с сопротивлением, которое можно изменять. Чтобы провести такую операцию, необходимо замерить углубление прохождения стержня сердечника внутрь катушки. С отсутствием этого инструмента, катушка будет иметь не значительное сопротивление, но если стержень будет введён в неё, сопротивление повысится до максимума.

Дроссель, который наматывается правильным шнуром, не будет перегреваться, но, возможно, сердечник будет отличаться сильной вибрацией. Это учитывается при стяжке и крепеже железных пластин.

Установка


При использовании параллельной схемы соединения диодных мостов необходимо учитывать, что все они имеют некоторый разброс по параметрам.

Поэтому при подборе элементов необходимо делать это с некоторым запасом прочности. При соблюдении этого требования для сварочного аппарата можно получить диодный мост более компактный, чем при использовании одиночных диодов.

Диодные сборки позволяют размещать их на одном радиаторе, так как корпусы не находятся под напряжением. Это позволяет монтировать их в любом месте, и даже снаружи.

В зависимости от требуемого сварочного тока для выпрямителя могут потребоваться от 3 до 5 диодных сборок. Для лучшей теплоотдачи диодные мосты устанавливаются на радиатор через теплопроводящую пасту.

К контактам проводники рекомендуется подсоединяться пайкой, в противном случае могут быть потери мощности в месте контакта и его сильный нагрев.

Эксплуатация балластного соединения

Показатель балластного сопротивления регулирующего аппарата находится на уровне 0,001 Ом. Он подбирается путём эксперимента. Непосредственно для получения сопротивления, преимущественно используется сопротивление проволоки больших мощностей, их применяют в троллейбусах или на подъёмниках.

Уменьшить сварочное напряжение высокой частоты, можно даже используя стальную пружину для двери.

Такое сопротивление включается стационарно или по-другому, чтобы в будущем была возможность с легкостью отрегулировать показатели. Один край этого сопротивления подключается к выходу конструкции трансформатора, другой обеспечивается специальным инструментом для зажима, который сможет перекидываться по всей длине спирали, что позволит выбрать нужную силу напряжения. Основная часть резисторов с использованием проволоки большой мощности, производится в виде открытой спирали. Она монтируется на конструкцию в длину полметра. Таким образом, спираль делается также из проволоки ТЭНа. Когда резисторы, изготовленные из магнитного сплава скооперировать со спиралью или любой деталью из стали, в процессе работы прохождения тока с высокими показателями, она начнёт заметно дрожать. Такой зависимостью спираль обладает только до того момента, пока она не растянется.

Схемы моделей ММА-200 и ММА-250

Большое распространение получили модели ММА-200 и ММА-250. Эти инверторы практически идентичны, разница заключается лишь в нижеприведенных моментах:

  1. Схема сварочного инвертора ММА 250 предусматривает наличие в выходном каскаде по 3 резистора полевого типа. Все ни подключены параллельно. Схема сварочного инвертора ММА 200 указывает лишь на наличие двух резисторов.
  2. У новой версии три импульсных трансформатора, в то время как у старой только два.

Основная схема обеих моделей практически полностью идентична.

Схема инвертора ММА-200

Изготовление инвертора

Перед началом изготовления высокочастотного трансформатора для инвертора нужно изготовить гетинаксовую плату, руководствуясь схемой 2. Трансформатор выполнен на магнитопроводе типа «Ш20х28 2000 НМ» с рабочей частотой 41 кГц. Для его намотки (I обмотки) необходимо использовать медную жесть толщиной 0,3..0,45 мм и шириной 35..45 мм (ширина зависит от каркаса). Нужно сделать:

  1. 12 витков (площадь поперечного сечения (S) около 10..12 кв. мм.).
  2. 4 витка для вторичной обмотки (S = 30 кв. мм.).

Высокочастотный трансформатор нельзя мотать обыкновенным проводом из-за возникновения скин-эффекта. Скин-эффект — способность высокочастотных токов вытесняться на поверхность проводника, тем самым нагревая его. Вторичные обмотки следует разделить пленкой из фторопласта. Кроме того, трансформатор должен нормально охлаждаться.

Дроссель выполнен на магнитопроводе типа «Ш20×28» из феррита 2000 НМ с S не менее 25 кв. мм.

Трансформатор тока выполняется на двух кольцах типа «К30×18×7» и мотается медным проводом. Обмотка l продевается через кольцевую часть, а II обмотка состоит из 85 витков (d = 0,5 мм).

Схема 2 — Схема инверторного сварочного аппарата своими руками (инвертор).

После успешного изготовления высокочастотного трансформатора нужно осуществить монтаж радиоэлементов на печатной плате. Перед пайкой обработать оловом медные дорожки, детали не перегревать. Перечень элементов инвертора:

  • ШИМ — контроллер: UC3845.
  • MOSFET-транзистор VT1: IRF120.
  • VD1: 1N4148.
  • VD2, VD3: 1N5819.
  • VD4: 1N4739A на 9 В.
  • VD5-VD7: 1N4007.
  • Два диодных моста VD8: KBPC3510.
  • C1: 22 н.
  • C2, C4, C8: 0,1 мкФ.
  • C3: 4,7 н и C5: 2,2 н, C15, С16, С17, C18: 6,8 н (только использовать К78−2 или СВВ- 81).
  • C6: 22 мк, С7: 200 мк, С9-С12: 3000 мк 400 В, C13, C21: 10 мк, C20, C22: 47мк на 25 В.
  • R1, R2: 33k, R4: 510, R5: 1,3 k, R7: 150, R8: 1 на 1 Вт, R9: 2 M, R10: 1,5 k, R11: 25 на 40 Вт, R12, R13, R50, R54: 1 к, R14, R15: 1,5 k, R17, R51: 10, R24, R25: 30 на 20Вт, R26: 2,2 к, R27, R28: 5 на 5Вт, R36, R46-R48, R52, R42-R44 — 5, R45, R53 — 1,5.
  • R3: 2,2 k и 10 к.
  • К1 на 12 В и 40А , К2 — РЭС-49 (1).
  • Q6-Q11: IRG4PC50W.
  • Шесть MOSFET-транзисторов IRF5305.
  • D2 и D3: 1N5819.
  • VD17 и VD18: VS-HFA30PA60CPBF; VD19-VD22: VS-HFA30PA60CPBF.
  • Двенадцать стабилитронов: 1N4744A.
  • Две оптопары: HCPL-3120.
  • Катушка индуктивности: 35 мк.
Ссылка на основную публикацию